《探析数学中的美》精选论文(通用15篇)(第5页)
86 次下载 23 页 38181 字【 字体:大 中 小 】
三)注重联系学生学习内在环境,引导学生数学学习的积极思维。
倾听在于重点听心。学生的非言语行为和言语行为往往表露在学生的外部。其实,教师在倾听时,一方面通过这些外部行为,倾听学生的内在环境,另一方面,学生并没有表露出来,这就要教师善于根据学生内部发展的心理规律去引导。这里的心理规律当然包括学习心理和个性心理。教师在听“心”中,顺其自然地把学生引导到积极思维状态,这也是数学学习的核心问题。
案例三:《因式分解》(浙江教育版第6章第一节),是数学学习的一个非常重要也是数学中的传统经典内容,它是打开代数宝库的一枚钥匙。现就这一内容的教学,围绕讨论的问题,展示自己教学中的师生对话的一个片段。
教师:同学们,2×3×7=46,属于什么数的运算?
学生:整数乘法运算。
教师:嗯,那么46=2×3×7又称什么呢?
学生:因数分解。
教师:同学们小学数学知识掌握得太好了!把整数发展到整式是否也能转化呢?下面请同学们填一填,议一议。(教师出示以下题目)
(1)①m(a+b+c)=;
②(a+b)(a-b)=;
③(a±b)2=.
(2)根据(1)中的结果,填一填:
①am+bm+cm=;
②a2-b2=;
③a2±2ab+b2 =.
讨论下面的问题:
比较(1)与(2)中的变形是怎样的转化过程?又有什么关系呢?
学生:(顺利完成练习)(1)中变形是积化和差,属于整式乘法,(2)中变形是和差化积。两者关系是互逆关系。
教师:大家能用一句话来概括(2)式中的变形吗?
学生:把一个多项式分解为几个整式的形式
教师:(根据学生回答,板书)呵呵,同学们真不简单,概括得不错!
学生:(大多数学生脸上显示得意的表情)
教师:(教师沉默片刻:看看黑板板书,又翻开课本,显示遗憾状态)真糟糕,刚才老师犯了一个错误,没有指出同学们回答问题时出现的一个关键的问题,大家快来找一找啊!
学生:(有的看黑板,若有所思,有的翻书。一位同学抢先看出了问题,举起了手,教师示意发言)
学生:老师,我发现了,差了三个重要的字:“乘积的”。应该是“把一个多项式分解为几个整式的乘积的形式。”
教师:太好了,这正是我们这节课要认识的最重要问题。
接下来教师和学生一起得出因式分解的定义,并通过练习,特别强化“乘积”这一概念的本质属性。
在本片段对话中,笔者首先倾听到学生“整数分解”和“多项式乘法”的学习内部环境,从学习心理角度,了解学生因式分解的认知“停靠站”,很自然地让学生自己走到因式分解的学习境地中。当倾听学生所表达的东西与现实的差异时,笔者认识到这些差异中的某些方面正是需要学生受到挑战的地方。“乘积的”这三个关键词作为一种“强化物”,让学生迎来了积极的思维,为学习因式分解定义抓住 “龙头”。后续的学习无论是练习还是概念的进一步深化,学生的思维都进入了正确的轨道,学习由此达到佳境。
(四)细心发现学生可利用的生成资源,帮助学生数学学习中自我成长。
课堂教学面对的是一个群体,在教学预设时,是根据这个群体宏观的作好布局。但学生的差异和教学的开放,使课堂呈现出多变性和复杂性。因此,教学中教师的倾听再不是根据宏观的设计当教学不再按照预设机械展开,而是教师要根据实际细心发现学生可利用的生成资源,机智生成新的教学方案,使教学富有灵性,彰显智慧,帮助学生营造更大的发展空间。
案例四:在一节《二次函数》习题课上,教师的预设,其教学目的在于让学生掌握用“一般式”方法掌握求二次函数的解析式,因为这是最基本的方法。当教师与学生复习了二次函数的有关基础知识后,出示了下面的一道题:
已知二次函数的图象与x轴的交点横坐标为 ,x2=-3,且通过点(0,-2)。求这个二次函数的解析式。
教师:对于这个题,大家准备怎样设解析式?
