当前所在位置: 首页 > 参考文献 > 正文

硕士论文参考文献中范文参考

本文共计6728个字,预计阅读时长23分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

硕士论文参考文献中范文参考

  范文一

硕士论文参考文献中范文参考

  [1] Bismut, J.M. Analysis convexe et probabilities[J], Jacrnal of Mathematical Analysis andApplicaions. 1973,vol. 42(3), 639-673.

  [2] Bismut, J.M. Controle des systems lineaires quadratiquas: applications del integralestochastique[M],Semin. Proba. XII. Lect. Notes in Math. 1978,649: 180-264,Springer.

  [3]Peng, S. G. (1992b), A generalized dynamic programming principle andHamiltion-Jacobi-Bellman equation[J],Stochastic,1992,Vol. 38,119-134.

  [4] Pardoux,E, and Peng, S. G. (1992),Backward stochastic differential equations and quasi-linearparabolic partial differential equations [J]. Lecture notes in CIS 176,200-217,Springer.

  [5] Kohlmann,M. and Zhou, X. Y. Relationship between backward stochastic differential equationsand stochastic controls [J]: a linear-quadratic approach, SIAM Journal on Control and Optomization,2000,38(5),1392-1407.

  [6] Emmanuel Gobet,Jean-Philippe Lemor and Xavier Warin Centre. A regression-based MonteCarlo method to solve backward stochastic differential equations [J]. The Annals of AppliedProbability. 2005, Vol.l5?N0.3? 2172-2202.

  [7] Peng, S. G. Probabilistic interpretation for systems of quasilinear parabolic partial differentialequations [J], Stochastic, 1992,37,61-74.

  [8] Peng, S. G. (1992a),Stochastic Hamilton-Jacobi-Bellman Equations [J] ? SIAM J. Control Optim.30,284-304.

  [9] Antonelli, F. Backward-forward stochastic differential equations[J],Ann. Appl. Probab. 1993,3,777-793.

  [10] Ma, J. Protter, P. and Yong, J. Solving forward-backward stochastic differential equationsexplicitly-a four step scheme[J]? Probability Theory and Related Fields, 98(3),1994,339-359.

  [11] Tang, S. and Li, X. Maximun principle for optimal control of distributed parameter stochasticsystems with random jumps [J],Differential equations, dunamical systems, and control science, 1994,152,867-890.

  [12] Rong,S. On solutions of a backward stochastic differential equations with jumps andapplication, Stochastic Processes and Their Apllications, 1997,66,209-236.

  [13] Yong,J. Finding adapeted solutions of forward-backward stochastic differential equations:method of continuation[J],Probability Theory and Related Fields, 1997,107(4),537-572.

  [14] EI Karoui,N., Peng, S. G and Quenez,M. C. Backward stochastic differential equations infinace, Mathematical Finance,1997, 7(1),1-71.

  [15] Rouge, R. and EI Karoui, N. Pricing via utility maximization and entropy [J], MathematicalFinance, 2000,10(2),259-276.

  [16] Kobylanski, M. Backward stochastic differential equations and partial differential equationswith quadratic growth[J]? The Annals of Probability,2000,28(2), 558-602.

  [17] Briand, P. and Hu,Y. BSDE with quadratic growth and unbounded terminal value, ProbabilityTheory and Related Fields,2006,136(4),604-618.

  [18] Buckdahn, R. Engelbert, H.-J. and Rascanu, A. On weak solutions of backward stochasticdifferential equations [J], Rossiiskaya Akademiya Nauk. Teoriyea Veroyatnostei i ee Primeneiya,2004,49(1),70-108.

  [19] Ma, H., J. Zhang,and Z. Zheng, Weak solutions for forward-backward SDRs: a martingaleproblem approach [J] ? The Annals of Probability,2008, 36(6) 2092-2125.

  [20] Liang, G., Lyons, T. and Qian, Z. Backward stochastic dynamics on a filtered probabilityspace [J]. 2009.

  [21] Duffie, D. and Epstein, L. Stochastic differential utility,Econometrica,1992, 60(2),353-394.

  [22] Weidong Zhao, Lifeng Chen, and Shige Peng. A new kind of accurate numerical method forbackward stochastic differential equations. SIAM J. SCI. COMPUT. Vol. 28, NO. 4,pp. 1563-1581.

  [23] Douglas J, Ma J,Protter P. Numerical Methods for Forward-backward Stochastic DifferentialEquations [J]. Annals of Applied Probability. 1996,6:940-968.

  [24] Bally V. Approximation Scheme for Solutions of Backward Stochastic Differential Equations [J].Pitman Res. Notes Math. Ser. Q997,364:177-191.

  [25] Bally V,Pages G. A Quantization Method for the Discretization of BSDE's and ReflectedBSDE's. Preprint. 2000.

  [26] Bally V, Pages G. Error analysis of the quantization algorithm for obstacle problems.Preprint.2002.

  [27] Chevance D. Discretisation des Equations DifFerentieles Stochastiques Retrogrades, NumericalMethods in Finance [A],eds. L.C.G. Rogers&D.

  [28] Briand P,Delyon B,and Memin J. Donsker-type Theorem for BSDEs [J]. Electron. Comm.Probab. 2001,6:1-14.

阅读全文