硕士论文参考文献中范文参考
本文共计6728个字,预计阅读时长23分钟。【 字体:大 中 小 】
硕士论文参考文献中范文参考
范文一
[1] Bismut, J.M. Analysis convexe et probabilities[J], Jacrnal of Mathematical Analysis andApplicaions. 1973,vol. 42(3), 639-673.
[2] Bismut, J.M. Controle des systems lineaires quadratiquas: applications del integralestochastique[M],Semin. Proba. XII. Lect. Notes in Math. 1978,649: 180-264,Springer.
[3]Peng, S. G. (1992b), A generalized dynamic programming principle andHamiltion-Jacobi-Bellman equation[J],Stochastic,1992,Vol. 38,119-134.
[4] Pardoux,E, and Peng, S. G. (1992),Backward stochastic differential equations and quasi-linearparabolic partial differential equations [J]. Lecture notes in CIS 176,200-217,Springer.
[5] Kohlmann,M. and Zhou, X. Y. Relationship between backward stochastic differential equationsand stochastic controls [J]: a linear-quadratic approach, SIAM Journal on Control and Optomization,2000,38(5),1392-1407.
[6] Emmanuel Gobet,Jean-Philippe Lemor and Xavier Warin Centre. A regression-based MonteCarlo method to solve backward stochastic differential equations [J]. The Annals of AppliedProbability. 2005, Vol.l5?N0.3? 2172-2202.
[7] Peng, S. G. Probabilistic interpretation for systems of quasilinear parabolic partial differentialequations [J], Stochastic, 1992,37,61-74.
[8] Peng, S. G. (1992a),Stochastic Hamilton-Jacobi-Bellman Equations [J] ? SIAM J. Control Optim.30,284-304.
[9] Antonelli, F. Backward-forward stochastic differential equations[J],Ann. Appl. Probab. 1993,3,777-793.
[10] Ma, J. Protter, P. and Yong, J. Solving forward-backward stochastic differential equationsexplicitly-a four step scheme[J]? Probability Theory and Related Fields, 98(3),1994,339-359.
[11] Tang, S. and Li, X. Maximun principle for optimal control of distributed parameter stochasticsystems with random jumps [J],Differential equations, dunamical systems, and control science, 1994,152,867-890.
[12] Rong,S. On solutions of a backward stochastic differential equations with jumps andapplication, Stochastic Processes and Their Apllications, 1997,66,209-236.
[13] Yong,J. Finding adapeted solutions of forward-backward stochastic differential equations:method of continuation[J],Probability Theory and Related Fields, 1997,107(4),537-572.
[14] EI Karoui,N., Peng, S. G and Quenez,M. C. Backward stochastic differential equations infinace, Mathematical Finance,1997, 7(1),1-71.
[15] Rouge, R. and EI Karoui, N. Pricing via utility maximization and entropy [J], MathematicalFinance, 2000,10(2),259-276.
[16] Kobylanski, M. Backward stochastic differential equations and partial differential equationswith quadratic growth[J]? The Annals of Probability,2000,28(2), 558-602.
[17] Briand, P. and Hu,Y. BSDE with quadratic growth and unbounded terminal value, ProbabilityTheory and Related Fields,2006,136(4),604-618.
[18] Buckdahn, R. Engelbert, H.-J. and Rascanu, A. On weak solutions of backward stochasticdifferential equations [J], Rossiiskaya Akademiya Nauk. Teoriyea Veroyatnostei i ee Primeneiya,2004,49(1),70-108.
[19] Ma, H., J. Zhang,and Z. Zheng, Weak solutions for forward-backward SDRs: a martingaleproblem approach [J] ? The Annals of Probability,2008, 36(6) 2092-2125.
[20] Liang, G., Lyons, T. and Qian, Z. Backward stochastic dynamics on a filtered probabilityspace [J]. 2009.
[21] Duffie, D. and Epstein, L. Stochastic differential utility,Econometrica,1992, 60(2),353-394.
[22] Weidong Zhao, Lifeng Chen, and Shige Peng. A new kind of accurate numerical method forbackward stochastic differential equations. SIAM J. SCI. COMPUT. Vol. 28, NO. 4,pp. 1563-1581.
[23] Douglas J, Ma J,Protter P. Numerical Methods for Forward-backward Stochastic DifferentialEquations [J]. Annals of Applied Probability. 1996,6:940-968.
[24] Bally V. Approximation Scheme for Solutions of Backward Stochastic Differential Equations [J].Pitman Res. Notes Math. Ser. Q997,364:177-191.
[25] Bally V,Pages G. A Quantization Method for the Discretization of BSDE's and ReflectedBSDE's. Preprint. 2000.
[26] Bally V, Pages G. Error analysis of the quantization algorithm for obstacle problems.Preprint.2002.
[27] Chevance D. Discretisation des Equations DifFerentieles Stochastiques Retrogrades, NumericalMethods in Finance [A],eds. L.C.G. Rogers&D.
[28] Briand P,Delyon B,and Memin J. Donsker-type Theorem for BSDEs [J]. Electron. Comm.Probab. 2001,6:1-14.


《范进中举》自测训练(上)
《范进中举》自测训练(下)
音乐课题开题报告(通用13篇)
音乐课题开题报告模板
节奏训练在音乐教学中的运用论文(通用6篇)
机械加工机械振动成因及解决措施论文
探微初中语文课堂之美
情感教育在初中阅读教学中的应用
试论高职院校化学试验室废水污染的防治
电气自动化专业优秀工程师培养探寻
建筑施工安全管理问题研究
高中语文学习中有效思考方法探析
浅论汽车维修与运用机械类模块教学的初步设计
机械加工专业教学现状及教改措施
机械加工行业OA系统解决方案
机械设计与机械加工中常见问题及改善措施论文
建筑设计过程中的150个问题及解决措施
试论机械加工过程中数控技术的运用
机械加工振动问题及措施的论文
机械设备在维修过程中的问题与解决措施