当前所在位置: 首页 > 论文范文 > 正文

小学数学思想有效渗透途径论文(第2页)

本文共计4747个字,预计阅读时长16分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  在计算教学中,表面上看,计算技能的培养为解决问题提供一种工具,其本身的思维训练功能并不明显。事实上,只要我们的教师善于揭示计算教学中蕴含的数学思想方法,认真地把握、巧妙地设计,计算技能的教学同样能促进学生的思维。课例中,教师借助方块模型,帮助学生构建起直观的混合运算的数学模型,充分应用了数形结合的思想。学生借助“形”感悟混合运算的结构,在填数建模的过程中初步发展了模型思想。

  3.在规律探索的过程中渗透数学思想方法

  在数学教学中,数学规律是最基本的知识形式。数学规律的揭示需要具体的数学知识,但更多的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。如,在教学苏教版四年级“找规律”一课时,首先呈现:在一条20米长的路的一侧,每2米种一棵树,能种几棵?面对这一挑战性的问题,学生纷纷猜测:到底有几棵?此时,教师出示图1(如下图1)先引导学生理解“每2米”就是植树的“间隔”。再让学生动手画一画、用实物摆一摆、议一议,在经历了动手操作后,将学生的结果归纳为如图2(如下图2)的3种情况。让学生在观察后概括出:两端都种,可以种6棵;一端种一端不种,可以种5棵;两端都不种可以种4棵。紧接着让学生进一步讨论:除了“每2米”种一棵,还可以怎样种?学生在上面探究思路和过程的启发下,很快得出每4米、5米、10米、1米、20米种一棵的结果。此时,教师因势利导,进一步引导学生观察、归纳、总结出植树问题的规律。通过这样的探究活动,向学生渗透了探索归纳、数型结合、数学建模的思想方法,使学生感受到数学思想方法在规律探索中的重要作用。

  4.在数学活动的操作实践中渗透数学思想方法

  数学知识发生、形成、发展的过程也是思想方法产生、应用的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料。通过实际操作,再现数学形成的过程,渗透数学思想,使学生在掌握数学知识技能的同时,真正领略数学思想方法。如“,平行四边形的面积”一课,在探究平行四边形的面积时,先放手让学生小组合作。在交流中学生发现都是把平行四边形变成了长方形。“为什么要把平行四边形变成长方形呢?”在教师的追问下引导学生说出将平行四边形面积变为长方形的面积,将新知识变成旧知识。教师及时小结“这种把新知识转化成旧知识的方法叫做转化。”转化方法的引入水到渠成。接着组织学生讨论:平行四边形和转化后的长方形有什么关系?在计算长方形面积的基础上怎样计算平行四边形的面积?引导学生折一折、画一画、移一移、拼一拼、说一说等活动。学生通过思考、操作、探究、交流等活动,经历了知识的形成过程,领悟到了“转化”这一研究数学的思想和方法。通过操作,既培养了学生获取知识、观察和操作能力,又帮助学生理解了转化的数学思想,构建数学思想方法模型。

  5.在问题解决的过程中渗透数学思想方法

  由于数学思想方法具有高度的抽象性,教师在教学中要有意识地把抽象的数学思想方法一点一滴地渐渐融入具体的、实在的问题解决过程中,使学生逐步积累对这些数学思想方法的初步的`直觉认识。比如在教学苏教版二年级《求比一个数多几的数》一课,“男生有5人,女生有8人,女生比男生多多少人?”时,在师生操作、交流中引导学生通过将男生与女生排队的方法(用实物图)、用△、○等图形来代替男、女,从图中一眼看出女生比男生多3人,到学生用算式计算:求8比5多几?引导学生经历从实物直观→图形直观→符号(式子)数学化的过程中初步感受了数形结合、一一对应的思想方法。

  6.在数学知识的拓展延伸中渗透数学思想方法

  数学知识的拓展和延伸是学生对所学知识理解和运用的价值体现。数学教学中教师往往在学习了新知后及时地出现一些比较开放、容易激发学生兴趣爱好,调动学生积极参与思考的练习,既检验了学生对知识的掌握情况,又开发了学生的思维,同时也渗透了数学的思想方法。如,在教学了万以内数的认识之后,教师出示了这样一个游戏活动:两个同学一组做猜数游戏,一名同学说数,另一名同学猜。通过游戏活动,学生在体会数的大小以及这个数与其它数之间的关系的同时,还将学习一种解决问题的策略,其中包含着朴素的二分法和逐步逼近的数学思想。

阅读全文