当前所在位置: 首页 > 生命毕业论文 > 正文

单分子光镊技术对生命科学的应用论文

本文共计7815个字,预计阅读时长27分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

单分子光镊技术对生命科学的应用论文

  众所周知,大多数宏观的生物过程是由最基本的单个蛋白酶与单个DNA分子或RNA分子之间的反应来完成的。伴随着生物技术和分子生物学的进步,生命研究日益向微观层次深入并进入后基因时代,人们不再满足于过去只对生物体中大量分子平均行为的研究,更倾向于从单分子水平解读生物大分子的动力学细节。利用单分子技术研究生物学问题,尤其是针对蛋白质复合物相互作用的动态过程分析是近年国际上新兴的研究方向。目前,单分子技术主要分为两大类。一类基于荧光体系的单分子技术,主要包括单分子荧光共振能量转移技术(singlemoleculefluorescencereso—nanceenergytransfer,smFRET)[1]、荧光相关谱技术(fluorescencecorrelationspectroscopy,FCS)[2]和随机光学重建显微镜技术(stochasticopticalreconstruc—tionmicroscopy,STORM)[3]等。以STORM为例,它采用光转换荧光探针(photo—switchablefluorescentprobes),可以在时间尺度上分离相互重叠发光的荧光分子,从而得到10~20nm高分辨率的三位重构图像[3—5]。而传统的光学显微镜技术由于受衍射极限的限制,分辨率都在几百个纳米的水平。STORM技术还可以在纳米层次上揭示细胞内分子间相互作用及组织内细胞间的相互作用。相信随着STORM技术的进一步发展,这一技术将被广泛应用到DNA、蛋白质分子以及大分子复合体的研究[6]。另一类单分子技术则基于力学测量体系建立,主要以原子力显微镜(atomicforcemicroscope,AFM)、磁镊及光镊技术为代表[7]。如图1所示,这三种技术分别利用机械臂、磁学和光学的方法来对研究对象施加作用力[7]。因此,它们所能达到的分辨率不同(表1[8]),其中以光镊技术为最高,其空间和时间分辨率分别可以达到0。2nm(小于1个DNA碱基对的长度)和次毫秒级,同时,光镊是通过激光实现对研究对象的非接触捕获的,力均匀地施加在整个研究对象表面,不会像AFM一样对研究对象造成机械损伤。由于光镊技术超高的分辨率,应用光镊可以直接连续追踪单个生物大分子折叠和去折叠的完整过程,实时测量力、距离、时间及中间态等动力学信息[8],极大地满足了人们从分子结构角度剖析生物分子工作机制的需求。

单分子光镊技术对生命科学的应用论文

  近三十年来,单分子光镊技术逐渐趋于成熟,物理学家通过改进光学硬件配置,发展新的实验方法(差分探测法[9])等,由单光镊、双光镊[10]到多光镊,由线性光镊、旋转光镊、全息光镊[11]到纳米光镊[12—13],大大提高了光镊的测量精度和广度,这也预示着光镊技术具有不可估量的发展前景和广阔的应用领域。本文将首先介绍单分子光镊技术的基本原理和装置,并结合实验室的研究方向,介绍有关光镊的基本实验设计、光镊在生命科学领域的应用,最后对光镊的发展前景进行展望。

  1光镊基本原理

  光是一种电磁波,在与物质相互作用时不仅会发生能量的传递,也会发生动量的传递,也就是说光会对该物质施加一定的力,即产生光的力学效应。1970年,A。Ashkin首次提出光辐射压力(光压)可以操纵微小微粒[14]。1986年,A。Ashkin和Chu等实验发现,只需要一束高度聚集的激光,就可形成稳定的三维光学势阱以稳定俘获微粒[15],由于只使用了一束激光,所以称之为单光束梯度力光阱,简称光镊。光镊是基于光的辐射力建立的。如图2所示,在折射率为n2的介质中存在一个折射率为n1的微粒(n1>n2),当一束带有动量P1的激光穿过该微粒时,经两次折射后,激光的动量变为P2。根据动量守恒定律,微粒将产生与激光的动量变化大小相等、方向相反的动量,即Δp。由动量与冲量的关系和牛顿第二定律可知,微粒会受到一等于动量变化率的作用力,因此,当我们采用高数值孔径(NA>1)[15]的物镜将激光聚焦到一个焦点f(捕获中心)时,不论微粒上、下、左、右、前、后偏离激光焦点f,微粒都会受到一个指向焦点的作用力。这个焦点就如同一个“陷阱”可以捕获该微粒,因此在光镊实验中,我们通过调节激光的位置就可以像一把无形的“镊子”达到操控微粒的目的。同时,微粒偏离捕获中心的距离和其受到的回复力成正比[16],这决定了光镊对微粒的操控不是刚性的,而是类似于“弹簧”,并符合胡克定律F=–kΔx。其中,F是拉力,k是光镊的刚度系数(stiffness),Δx是微粒偏离激光中心的位移。通过微粒产生位移和激光的刚度系数即可计算出拉力F。因此,在操作过程中,我们可以通过实时测量微粒的位移得到微粒间的相互作用力,从而得到与微粒相连的生物分子上所受的作用力。

阅读全文
 1 2 3 4 下一页 尾页