当前所在位置: 首页 > 论文范文 > 正文

数据挖掘在股票估价的运用(第2页)

本文共计3698个字,预计阅读时长13分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  3.3股票价格的非线性预测模型

  对于股票价格时间序列{xt},t=1,2,…n,由于LSSVM不能对一维时间序列进行直接预测,因此本文通过拓阶方式将一维股票价格时间序列转换成为多维时间序列{(xi,yi)},i=1,2,…k,xi和yi分别表示样本输入和输出,xi∈Rn,yi∈R,通过非线性映射函数φ(•)将样本映射到高维特征空间,从而获得最优线性回归函数:(略)。

  根据结构风险最小化原则,式(9)问题求解的`LSSVM回归模型为:(略)。

  通过引入拉格朗日乘子将上述约束优化问题转变为无约束对偶空间优化问题,即:(略)。

  选择径向基核函数作为LSSVM核函数,最后得到股票价格的LSSVM预测模型为:(略)。

  3.4股票价格的组合预测步骤

  1)收集某支股票价格的历史数据。2)对股票价格原始历史数据进行预处理,将其值缩放到0.1到0.9之间。3)采用ARIMA模型对股票价格线性变化规律进行预测,得到线性预测值。4)计算股票价格原始历史数据与ARIMA模型预测值之间的残差,这样股票价格的非线性变化规律就隐藏于预测残差中。5)对股票价格预测残差数据进行拓阶,确定模型最优滞后阶数,并对股票价格残差数据进行重构,得到LSSVM的样本集。6)将重构的股票价格残差数据输入到LSSVM进行学习,并对其进行预测,得到股票价格残差预测值,即股票价格非线性部分预测值。7)对线性预测值和非线性预测值进行融合,得到股票价格的最终预测值。其具体工作流程如图2所示。

  3.5股标价格预测模型性能评价指标

  为了评价股票价格预测模型性能,采用本研究采用均方根误差和平均绝对相对误差作为模型性能评价指标,它们分别定义如下:(略)。

  4股票价格组合模型仿真

  4.1数据来源

  仿真数据来源于黄山旅游(600054)股票2007年1月到2007年12月的收盘价,共收集到211个数据样本,其中前111个数据作为训练集,对股票收盘价进行建模,最后100个样本作为测试集,检验股票收盘价预测模型的预测性能。600054的收盘价格如图3所示。

  4.2股票价格的线性部分预测

  对股票价格的原始数据首先进行归一化处理,然后将211个数据样本输入到DPS6.5软件中,采用ARIMA模块得到偏相关和自相关图,如图4所示。从图4可知,该股票价格具有明显的非平稳性,需要首先对其进行差分处理,使其变成平稳时间序列,ARIMA模型才能进行预测。股票价格的1阶偏相关和自相关图如图5所示,此时,股票价格基本平稳,因此最佳差分阶数d=1。采用从低阶到高阶逐步试探法来识别模型的参数,得到600054的收盘价格最优预测模模型为ARIMA(2,1,1),采用ARIMA(2,1,1)对最后100个样本,预测结果如图6所示。从图6可知,ARIMA模型对股票价格的预测精度不高,但是能够很好的把握股票价格变化趋势。

  4.3股票价格的非线性部分预测

  根据ARIMA(2,1,1)预测结果确定股票价格的残差序列,然后采用LSSVM进行逐步定阶,确定最优价数为3,然后采用最优阶数重构数据集,然后将训练本输入到LSSVM中进行学习建模,并对残差序列测试集进行预测。

  4.4获得股票价格的最终预测结果

  将ARIMA(2,1,1)和LSSVM模型预测结果进行相加,得到股票价格的最终预测结果。预测结果如图7所示。

  4.5与其它预测模型结果对比

  为了验证基于数据挖掘的股票价格预测模型的优越性,采用单一预测模型ARIMA和LSSVM进行对比实验,它们对股票价格测试集的预测结果RMSE和MAPE如表1所示。从表1的对比结果可知,基于数据挖掘的组合预测模型的股票价格预测精度要远远高于单一的ARIMA和SVM模型预测精度,预测误差大大降低,对比结果表明组合预测模型综合利用了ARIMA和SVM优势,达到优势互补,克服两者缺陷,更加全面的刻画了股票价格的变化规律,而单一预测模型只能反映股票价格部分信息,不能能够精确描述股票价格非线性和周期变化规律,因此相对于传统预测方法,基于数据挖掘的组合预测模型是一种有效股票价格预测方法。

  5结论

  股票价格受到多种因素影响,具有复杂非线性变化特点,单一预测方法只难反映其片断信息,预测精度低。为了全面、准确描述股票价格变化规律,提出一种基于数据挖掘的股票价格组合预测模型。仿真结果明,组合模型有效提高了股票价格预测精度,在股票价格预测中有着广泛的应用前景。

阅读全文