当前所在位置: 首页 > 计算机 > 正文

图像拼接算法及实现(第5页)

本文共计26845个字,预计阅读时长90分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

    图像配准简而言之就是图像之间的对齐。图像配准定义为:对从不同传感器或不同时间或不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程。为了更清楚图像配准的任务,我们将图像配准问题用更精确的数学描述出来。配准可以用描述为如下的问题:

    给定同一景物的从不同的视角或在不同的时间获取的两个图像I ,I 和两个图像间的相似度量S(I ,I ),找出I ,I 中的同名点,确定图像间的最优变换T,使得S(T(I ),I )达到最大值。

    图像配准总是相对于多幅图像来讲的,在实际工作中,通常取其中的一幅图像作为配准的基准,称它为参考图,另一幅图像,为搜索图。图像配准的一般做法是,首先在参考图上选取以某一目标点为中心的图像子块,并称它为图像配准的模板,然后让模板在搜索图上有秩序地移动,每移到一个位置,把模板与搜索图中的对应部分进行相关比较,直到找到配准位置为止。

    如果在模板的范围内,同一目标的两幅图像完全相同,那么完成图像配准并不困难。然而,实际上图像配准中所遇到的同一目标的两幅图像常常是在不同条件下获得的,如不同的成像时间、不同的成像位置、甚至不同的成像系统等,再加上成像中各种噪声的影响,使同一目标的两幅图像不可能完全相同,只能做到某种程度的相似,因此图像配准是一个相当复杂的技术过程。

  3.2 基于区域的配准

  3.2.1 逐一比较法

设搜索图为s待配准模板为T,如图3.1所示,S大小为M N,T大小为U V,如图所示。

 

              图3.1搜索图S与模板T示意图

 逐一比较法的配准思想是:

    在搜索图S中以某点为基点(i,j),截取一个与模板T大小一样的分块图像,这样的基点有(M-U+1) (N-V+1)个,配准的目标就是在(M-U+1) (N-V+1)个分块图像中找一个与待配准图像最相似的图像,这样得到的基准点就是最佳配准点。

    设模板T在搜索图s上移动,模板覆盖下的那块搜索图叫子图S ,(i,j)为这块子图的左上角点在S图中的坐标,叫做参考点。然后比较T和S 的内容。若两者一致,则T和S 之差为零。在现实图像中,两幅图像完全一致是很少见的,一般的判断是在满足一定条件下,T和S 之差最小。

根据以上原理,可采用下列两种测度之一来衡量T和S 的相似程度。D(i,j)的值越小,则该窗口越匹配。

          D(i,j)=  [S (m,n)-T(m,n)]                (3-1)

          D(i,j)=   [S (m,n)-T(m,n)               (3-2)

或者利用归一化相关函数。将式(3-1)展开可得:

D(i,j)= [S (m,n)] -2 S (m,n)*T(m,n)+ [T(m,n)]  (3-3)

    式中等号右边第三项表示模板总能量,是一常数,与(i,j)无关;第一项是与模板匹配区域的能量,它随((i,j)的改变而改变,当T和S 匹配时的取最大值。因此相

关函数为:

R(i,j)=                                      (3-4)

当R(i,j)越大时,D(i,j)越小,归一化后为:

 R(i,j)=                  (3-5)

根据Cauchy-Schwarz不等式可知式(3-5)中0 R(i,j) 1,并且仅当值S (m, n)/T (m, n)=常数时,R(i,j)取极大值。

    该算法的优点:

    (1)算法思路比较简单,容易理解,易于编程实现。

    (2)选用的模板越大,包含的信息就越多,匹配结果的可信度也会提高,同时能够对参考图像进行全面的扫描。

    该算法的缺点:

    (1)很难选择待配准图像分块。因为一个如果分块选择的不正确,缺少信息量,则不容易正确的匹配,即发生伪匹配。同时,如果分块过大则降低匹配速度,如果分块过小则容易降低匹配精度。

阅读全文