图像拼接算法及实现(第6页)
28 次下载 16 页 26845 字【 字体:大 中 小 】
(2)对图像的旋转变形不能很好的处理。算法本身只是把待配准图像分块在标准参考图像中移动比较,选择一个最相似的匹配块,但是并不能够对图像的旋转变形进行处理,因此对照片的拍摄有严格的要求。
3.2.2 分层比较法
图像处理的塔形(或称金字塔:Pyramid)分解方法是由Burt和Adelson首先提出的,其早期主要用于图像的压缩处理及机器人的视觉特性研究。该方法把原始图像分解成许多不同空间分辨率的子图像,高分辨率(尺寸较大)的子图像放在下层,低分辨率(尺寸较小)的图像放在上层,从而形成一个金字塔形状。
在逐一比较法的思想上,为减少运算量,引入了塔形处理的思想,提出了分层比较法。利用图像的塔形分解,可以分析图像中不同大小的物体。同时,通过对低分辨率、尺寸较小的上层进行分析所得到的信息还可以用来对高分辨率、尺寸较大的下层进行分析,从而大大简化分析和计算。在搜索过程中,首先进行粗略匹配,每次水平或垂直移动一个步长,计算对应像素点灰度差的平方和,记录最小值的网格位置。其次,以此位置为中心进行精确匹配。每次步长减半,搜索当前最小值,循环这个过程,直到步长为零,最后确定出最佳匹配位置。
算法的具体实现步骤如下:
(1)将待匹配的两幅图像中2 2邻域内的像素点的像素值分别取平均,作为这一区域(2 2)像素值,得到分辨率低一级的图像。然后,将此分辨率低一级的图像再作同样的处理,也就是将低一级的图像4 4邻域内的像素点的像素值分别取平均,作为这一区域(4 4)点的像素值,得到分辨率更低一级的图像。依次处理,得到一组分辨率依次降低的图像。
(2)从待匹配的两幅图像中分辨率最低的开始进行匹配搜索,由于这两幅图像像素点的数目少,图像信息也被消除一部分,因此,此匹配位置是不精确的。所以,在分辨率更高一级的图像中搜索时,应该在上一次匹配位置的附近进行搜索。依次进行下去,直到在原始图像中寻找到精确的匹配位置。
算法的优点:
(1)该算法思路简单,容易理解,易于编程实现。
(2)该算法的搜索空间比逐一比较要少,在运算速度较逐一比较法有所提高。
算法的缺点:
(1)算法的精度不高。在是在粗略匹配过程中,移动的步长较大,很有可能将第一幅图像上所取的网格划分开,这样将造成匹配中无法取出与第一幅图像网格完全匹配的最佳网格,很难达到精确匹配。
(2)对图像的旋转变形仍然不能很好的处理。与逐一比较法一样,该算法只是对其运算速度有所改进,让搜索空间变小,并无本质变化,因此对图像的旋转变形并不能进行相应处理。
3.2.3 相位相关法
相位相关度法是基于频域的配准常用算法。它将图像由空域变换到频域以后再进行配准。该算法利用了互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,具有一定的抗干扰能力,而且所获得的相关峰尖锐突出,位移检测范围大,具有较高的匹配精度。
相位相关度法思想是利用傅立叶变换的位移性质,对于两幅数字图像s,t,其对应的傅立叶变换为S,T,即:
S=F{s}= e T=F{t}= e (3-6)
若图像s,t相差一个平移量(x ,y ),即有:
s(x,y) = t(x-x ,y-y ) (3-7)
根据傅立叶变换的位移性质,上式的傅立叶变换为:
S( )=e T( ) (3-8)
也就是说,这两幅图像在频域中具有相同的幅值,只是相位不同,他们之间的相位差可以等效的表示为互功率谱的相位。两幅图的互功率谱为:
