当前所在位置: 首页 > 论文范文 > 正文

纳米材料论文(第23页)

本文共计63068个字,预计阅读时长211分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  4 项目主要研究内容和主要技术指标

  针对以上关键科学与技术问题,本项目拟开展以下几个方面的研究。

  (1)高性能电池关键材料的理论预测与设计 通过第一性原理的电子结构计算以及分子动力学模拟方法,结合先进的结构预测方法,实现对电池关键材料电子性质的'计算和晶体结构的预测,为研制新型高能量密度的锂、铝等电池提供理论指导。

  (2)纳米电极材料及电解质的研制与结构调控在前期理论计算与预测的基础上,探索高性能锂、铝等电池纳米电极材料新体系,提出微纳复合结构电极材料的性能优化策略;研制高离子导电率的电解质材料,并开发稳定且紧密结合的“纳米电极材料-电解质”界面新技术。

  (3)电极微纳结构与表界面的原位表征及演化规律发展电极微纳结构与表界面的原位表征方法,探索锂、铝等电池的纳米电极材料在电化学反应过程中的电输运、电子结构、晶体结构、表观形貌和界面反应的演化规律,从而揭示电极材料的储能机制、容量衰减因素、SEI 膜和负极金属枝晶的形成过程及添加剂对电极材料电化学性能的本征影响,为进一步优化纳米电极材料的电化学性能提供理论指导。

  (4)高效储能器件的设计与性能优化 基于理论计算预测和电池材料的实验验证,确定具有优异性能且匹配性良好的正负极材料,结合本项目研制的高离子导电率的电解质、隔膜及电池添加剂材料,通过均衡设计方法,设计和开发高比能的新型高效储能器件。

  本项目的主要技术指标包括:获得2~3 个比容量不低于350 mA·h/g(正极材料)和1500 mA·h/g(硅基负极)的锂电池新材料体系;获得1~2 2 S/cm)电解质;发展1-2 S/cm)及无机硫化物(10-3~10-个具有高离子导电率的聚合物(10 种以上电极微结构与表界面的新型原位表征技术;锂离子样品电池能量密度大于400 W·h/kg、循环稳定性大于500 次。

  5 项目团队及研究基础介绍

  项目团队集成厦门大学、武汉理工大学、华南理工大学和中山大学在纳米储能领域的优势力量,依托厦门大学固体表面物理化学国家重点实验室、武汉理工大学材料复合新技术国家重点实验室和国家能源材料化学协同创新中心(厦门大学),研究团队的组成具有良好的互补性。在前期研究中项目团队已获得了比容量达300 mA·h/g 的正极材料,构建了单根纳米线全固态电化学器件,实现了电化学反应过程中锂离子电池电极材料的形貌、结构及晶相变化和电荷载流子电输运性能的原位检测;钒系锂离子动力电池完成装车检测,显示出优异的安全性和低温性能。这些前期研究工作为本项目新型高效纳米储能器件的设计、组装与研制奠定了扎实基础,同时为将纳米能量存储材料的研究由“材料制备”层次提升到“器件研制”层次提供了可靠的技术保障。

  6 技术挑战与风险

  研制新一代高性能锂离子电池的关键是如何在多种技术路线中选择合理的研究方向,明确其中涉及的关键核心技术并提供确实可行的解决方案。为了降低技术风险,推进项目研究工作顺利进行,本项目将在理论计算和实验验证相结合的基础上制定合理的技术路线。此外,项目研究人员长期在纳米储能领域开展研究工作,具有较好的研究基础和经验,并与国内外锂电池研究团队及相关企业保持着密切的合作关系,由其前期自主研发的纳米线钒系锂离子动力电池的装车检测和结果为本项目开展高性能锂离子电池的基础研究与应用开发奠定了较好的基础。项目启动后,将定期开展项目课题间的研讨会并及时向项目专家组汇报最新研究进展、问题与成果,调整并逐步完善研究方案和实验路线,及时优化技术路线,尽量将完成本项目的总体目标的技术风险控制在最低范围内。

  7 项目预期效益

  电化学储能材料与器件是解决清洁能源转换、存储和利用的关键。发展高能量密度锂电池技术将为电动汽车、大规模储能、航空航天等提供亟需的、强有力的技术支撑,具有重要的科学意义和广阔的市场前景。本项目通过对高效纳米储能材料与器件的关键科学问题开展研究,预期在理论创新、材料制备、器件组装方面取得突破,即获得下一代锂离子电池关键材料的性能优化策略,实现性能优异的不同维度纳米电极材料及其复合材料的可控构筑和功能化,揭示电极微观结构对电荷载流子传输与扩散迁移等本征电化学行为的影响机制,设计并研制出高效纳米储能器件,完成锂离子样品电池能量密度大于400 W·h/kg,循环稳定性大于500 次的项目目标。项目实施将产生一批原创性学术成果和发明专利,推动高能量密度锂电池产业快速发展,提升我国在新一代电池技术的核心竞争力。

阅读全文