当前所在位置: 首页 > 数学毕业论文 > 正文

小学生数学小论文[精](第6页)

本文共计12467个字,预计阅读时长42分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  看来学好数学真的很重要,不然就会中招了。

小学生数学小论文13

  数学俗称“开发脑子的工具”,它无处不在,比方说在学习上,在生活中…~~

  ——题记

  一次,爸爸妈妈外出买衣服,我一个人在家,这可了坏了我这个“滑头”。我蹑手蹑脚的走到电脑旁,开启电脑,本想在“网”里“畅游”一番,可我这个聪明老爸早就知道我这招,便在电脑上设了密码!唉!怎么办呢?只能碰碰运气是一下啦。可我左试右试,每次都不行。

  正想关电脑时,突然看到屏幕上有一个“提示”,我一看是一道算式“20xx÷20xx分之20xx

  等于多少”我蒙了,可为了打电脑,只能拿起演算纸,动起脑筋:

  如果把它化成假分数,那就太麻烦了……。突然,我想起奥数老师曾说过:“一个分数除法算式中,除数是带分数时是不能拆开的,但可以化成假分数,在化成假分数时如果数字大,分子可以不算出来,用两个数相乘的'算式表示!”那不就成了,直接:

  =20xx÷20xx分之20xx×20xx+2005

  =20xx÷20xx分之20xx×20xx

小学生数学小论文14

  大千世界,无奇不有,如果你做一个有心人,并且善于总结,总能发现它们之间的相互规律。这不,今天,我在做课外习题时,就有了下面一个小发现。

  最近,老师刚给我们讲解了有关等差数列的计算方法,其中最典型的例子为:1+2+3+4+5……+97+98+99+100=?老师讲解的算法为: 1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050,当时,我觉得自己已经听懂了,心想以后碰到这类题目我也可以做了。

  但是,在做到具体习题时,事情的发展并不如我想象的那么简单。今天,我在做习题时就遇到了一只“拦路虎”:1-3+5-7+9……-1999+20xx=?

  咋一看到这道题目,我首先就懵住了,后来,强迫自己冷静下来认真思考,终于理出了一点头绪:这是等差数列,要求出答案,只要把加的部分和减的部分求出,再求差就行了,即,1-3+5-7+9……-1999+20xx

  =(1+5+9+……+20xx)-(3+7+……+1999)

  但是,在计算1+5+9+……+20xx,以及3+7+……+1999时我犯了难,因为它与老师的例题不相同,此时,我才感觉自己没有真正理解老师讲授的方法,于是我不得不重新学习老师的例题,并竭力回忆老师讲解的'过程:1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050中,该公式的基本算法应该为:(首项+末项)*数列个数/2;对于从1开始的并且数列之间的差为1的数列而言,其数列个数为最大的数,那么,对于不是从1开始,并且数列之间的差不是1的数列如何计算数列的个数呢? 我陷入了迷茫之中。

  这时,爸爸进来了,见我在思考问题,便也加入进来。爸爸循序渐进的启发我:

  1)1、2、3、4…·8、9、10总共有几个数?

  2)2、3、4…·8、9、10总共有几个数?

  3)0、1、2、3、4…·8、9、10总共有几个数?

  4)2、4、6、8、10总共有几个数?

  5)6、8、10总共有几个数?

  在我计算出结果后,爸爸又要求我分析它们之间的规律,并用公式来表达计算结果:

  经过好一会儿的脑力激荡,我终于理清了头绪,找出了计算数列个数的基本公式:即,

  数列个数=(末项-首项+差)/差,

  采用该公式,可以验算上面几道题的计算结果:

  1)1、2、3、4…·8、9、10的个数=(10-1+1)/1=10

  2)2、3、4…·8、9、10的个数=(10-2+1)/1=9

  3)0、1、2、3、4…·8、9、10的个数=(10-0+1)/1=11

小学生数学小论文15

  大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。

  比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”

阅读全文