“三角形的中位线”教学设计案例
本文共计4101个字,预计阅读时长14分钟。【 字体:大 中 小 】
“三角形的中位线”教学设计案例
摘要:本文从设计思路、教学过程、板书设计和课后反思四个方面介绍了“三角形的中位线”教学设计案例。
关键词:三角形中位线;设计思路;教学过程;板书设计;课后反思
作者简介:王雪枫,任教于甘肃省兰州市第四中学。
授课班级:甘肃省兰州市第四中学九年级(5)班
授课教材:义务教育课程标准实验教科书《数学》(北师大版)九年级上册第三章《证明(三)》第一节平行四边形(第三课时)。
一、设计思路
(一)教材分析
本课时所要探究的三角形中位线定理是学生以前从未接触过的内容。因此,在教学中通过创设有趣的情境问题,激发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生充分经历“探索—发现—猜想—证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。
(二)学情分析
本班学生基础知识比较扎实,接受新知识的意识较强,对于本章有关平行四边形的性质和判定的内容掌握较好,但知识迁移能力较差,数学思想方法运用不够灵活。因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。
三)教学目标
1.知识目标
1)了解三角形中位线的概念。
2)掌握三角形中位线定理的证明和有关应用。
2.能力目标
1) 经历“探索—发现—猜想—证明”的过程,进一步发展推理论证能力。
2) 能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。
3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。
3.情感目标
通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。
(四)教学重点与难点
教学重点:三角形中位线的概念与三角形中位线定理的证明.
教学难点:三角形中位线定理的多种证明。
(五)教学方法与学法指导
对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。
(六)教具和学具的准备
教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。
学具:三角形纸片、剪刀、刻度尺、量角器。
二、 教学过程
1.一道趣题——课堂因你而和谐
问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)
(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)
学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形.
如图中,将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。
问题:你有办法验证吗?
2.一种实验——课堂因你而生动
学生的验证方法较多,其中较为典型的方法如下:
生1:沿DE、DF、EF将画在纸上的△ABC剪开,看四个三角形能否重合。
生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。


经典毕业论文致谢信
优秀博士毕业论文致谢信范文
辽宁何氏医学院本科生毕业论文(设计)开题报告模板
优秀会计硕士毕业论文致谢信
优秀本科毕业论文致谢信模板
小学音乐论文参考文献范例
浅谈钢琴触键
浅谈奥德修斯与西方古典文学的人文主义传统
生物化学研究论文15篇(精)
生物化学研究论文15篇【精华】
2021年论文致谢词300字(通用6篇)
关于本科论文致谢(通用15篇)
舒曼歌曲中浪漫主义艺术特色
浅论音乐的节奏
浅谈音乐赏析让音乐走入学生的心灵
当前音乐教育存在的问题与对策论文(精选5篇)
音乐系毕业论文-分析巴赫BWV846的演奏技巧和艺术特征
“古典园林,精致江南”
古典分配理论探源
对古典文论的几句闲话