当前所在位置: 首页 > 开题报告 > 正文

计算机毕业设计开题报告范文(第2页)

本文共计4975个字,预计阅读时长17分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

二、课题研究内容

  1.手势的表示

  手势表示通常是利用手势模型和模型参数来表示的,所以在识别手势的时候首先要要对手势建模,识别是根据手势表示内容而选取手势特征量与模型匹配,由于环境文化和地区的不同会导致了手势的差异,可能会有使用不同的表达方式,所以手势通常是一个不太明确的概念,有时手势表达的含义在不同情景下承载的信息是不同的。比如不同地区表示暂停的时候是左手在上右手在下,而其它地方可能就是右手在上左手在下。

  本文设计的关键是对手势的建模训练,尤其是对待识别的手势的确定。具体的应用决定了采用什么样的手势模式,只有建立准确的手势模型才能利用算法进行对识别到的手势做出正确反馈。通常手势建模和手势识别所使用到的方法是相异的,采集手势特征数据的方法也不一样。目前基于数据手套的特征捕获方法是比较常用的采集数据信息的方式,通过选择相应的识别算法实现手势的识别反馈。

  2.常用手势识别算法分析

  2.1人工神经网络算法

  这种算法还具有抗干扰能力和容错性强识别速度快等优点,它能把预处理和识别的过程同时进行处理。在目前的识别领域中,运用的比较多的神经网络是误差反向传播神经网络(简称网络)。BP神经网络结构图算法是一种有监督式的学习算法,它由三部分构成输入层、中间层(也叫隐藏层)和输出层,其中的输入层和输出层的神经元节点是固定的`数目,两层之间存在从输入层到输出层的前馈连接和输出层至输入层的反馈连接,只有隐藏层的神经元是可以自由定义的。

  在人际交互识别领域中应用神经网络算法进行手势的识别时首先需要有自己的数据库系统,再对采集到的手势数据序列进行算法的训练,使用训练好的网络去识别输入的手势数据信息数据的含义即达到识别手势的目的,识别到后经由计算处理以实现人机交互的目的。神经网络的优点是抗干扰性和容错能力强,缺点是训练量比较大,扩充性不强对时序建模能力差,无法有效处理动作的速率带来的问题。

  2.2动态时间规整

  动态时间规整曾是语音识别的一种主流方式,它是一种将时间归整与距离测度结合起来的非线性正则化的技术,算法是建立一套科学的时间校准匹配路径将测试模式和参考模式建立起联系的算法。

  DTW的算法主要利用的动态编程技术(Dynamic Programming,DP)去实现,它的算法实现是将全局的优化分化成众多的局部最优化。所以在使用算法的时候需要将各局部最优化,已达到全部的最优化。

  在DTW算法中由于容易实现和数据的训练简单等优点被用在语音识别中广泛应用,但在手势识别领域由于其运算量太大和较弱的抗噪能力,很难达到对手势识别的实时性的要求。

  2.3特征选择

  手势识别本质上是对手势进行多分类任务,在实际的实验测试过程中,能够准确区分手部状态是进行手势识别任务的前提条件,且对后续的分类以及检测等任务的精准度至关重要。

  比如在进行图像识别过程中,对拍摄到的图像进行特征提取是判别手势的第一步,特征性质的优劣是后续进行图像信息处理的关键,对采集到的数据进行特征提取,提取过程中如果特征过于简单就会造成对图像信息的提取不全,导致最后的判别精确度较低的问题不能满足手势识别对人体手势识别高精确度的要求,而如果不考虑提取到的特征维度问题,容易造成数据维度灾难现象即产生大量的特征数据使计算机无法短时间进行处理,这样不能满足手势识别对于现场实时性的要求。

  因为在三维空间中执行的手势是动态的,采集到的加速度和姿态角的数据也是实时变化的,所以对于手势识别的数据是由内嵌在手套中的两个六轴陀螺仪加速度传感器产生的,当手部移动时会产生加速度,角速度姿态角等实时数据信息,处理器通过对传感器识别的运动数据进行采集计算最终识别手势的动作。

三、实验结果测试与分析

  1.实验手势

  本章主要内容是根据前面内容进行试验,通过实验验证可穿戴智能手套翻译器能够使用改进型的识别算法提高手势的识别率和识别精度。

  为验证嵌入式系统对手势手语识别的可行性,在进行试验时候从准备好的手势模型中各取四个进行手势识别试验。开始手势表达时要按箭头的方向做轨迹,同时要求一次性完成动作,不能在动作执行时有停顿,做完每一个手势都要停顿一定时间。

阅读全文