当前所在位置: 首页 > 数学毕业论文 > 正文

浅谈数学的几个方面(第4页)

本文共计7928个字,预计阅读时长27分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  最主要的,我要跟大家说的是立体几何在数学中是很重要而因难的部分。即使平面几何也可能很难。到了立体时,则更为复杂。近年来对碳60(C60)的研究显示了几何在化学中的应用。多面体图形的几何性质对固态物理也有重大的作用。球装不过是立体几何的一个 问题。立体几何是大有前途的。

  6.Finsler几何

  最近经我鼓励,Finsler几何有重大发展,作简要报告如下:在(x,y)平面上设积分s=∫ab F(x,y,dy/dx)dx,其中y是x的未知函数。求这个积分的极小值,就是第一个变分学的问题。称积分s为弧长,把观念几何化,即得Finsler几何。Gauss看出,在特别情形:F2=E(x,y)+F(x,y)y#39;2+G(x,y)y#39;2,y#39;=dy/dx,其中E,F,G为x,y的函数,几何性质特别简单。1854年,Riemann的讲演讨论了整个情形,创立了Riemann-Finsler几何。百余年来,Riemann几何在物理中有重要的应用,而整体Riemann几何的发展更是近代数学的核心部分。

  Riemann的几何基础包含Finsler几何。我们最近几年的工作,把Riemann几何的发展,局部的和整体的,完全推广到Finsler几何,而且很简单。因此,我觉得以后的微分几何课或Riemann几何课都应该讲一般情形。最近有几个拓扑问题,最主要的一个是Riemann流形的一个重要性质,即英国数学家Hodge的调和积分。现在有2个年轻人,一个是David Bao,另一个是他的美国学生,把这个Hodge的调和积分推广到了Finsler情 形。这将是微分几何的一块新园地,预料前景无限。1995年夏在美国西雅图有一Finsler几何的国际会议。其论文集已于今年由美国数学会出版。Finsler几何在1900年有名的Hilbert演讲中是第23个问题。

  7.中国的数学

  数学研究的最高标准是创造性:要达到前人未到的境界,要找着最深刻的关键。从另一点看,数学的范围,是无垠的。我愿借此机会介绍一下科学出版社从俄文翻译的《数学百科全书》,全书5大卷,每卷约千页。中国能出版这样的巨著,即是翻译,也是一项可喜的成就。这是一部十分完备的百科全书,值得赞扬的。对着如此的学问大海,入门必须领导,便需要权威性的学校和研究所。数学是活的,不断有杰出的贡献,令人赞赏佩服。但一个国家,比较可以集中某些方面,不必完全赶时髦。当年芬兰的复变函数论,波兰的纯粹数学,都是专精一门而有成就的例子。中国应该发展实力较强的方面。但由百科全书的例子,可看出中国的数学是全面的。这是一个可喜的现象。中国的财富在“人民”。中国的数学政策,除了鼓励尖端的研究以外,应该用来提高一般的数学水平。我有两个建议:

  (1)设立数学讲座,待遇从优,其资格可能是对数学发展有重大贡献的人;

  (2)设立新的数学中心,似乎成都,西安,广州都是可能的地点。中心应有相当的经费,部分可由地方负担,或私人筹措。

  近年因为国家开放,年轻人都想经商赚钱,当然国家社会需要这样的人。但是做科学的乐趣是一般人不能理解的。在科学上做了基本的贡献,有历史的意义。我想对于许多人,这是一项了不得的成就。在岗位上专心学问,提携后进,“得天下之英才而教育之”,应该是十分愉快的事情。 一个实际的问题,是个人应否读数学。Hardy 说,一个条件是看你是否比老师强。这也许太强一些。我想学习应不觉困难,读名著能很快与作者联系,都是测验。数学是小科学,可以关起门来做。在一个多面竞争的社会中,是一项有优点的职业,即使你有若干能力。中国的数学有相当水平。从前一个数学家的最高标准,是从国外名大学获得博士学位。我们国家现在所需做的,是充实各大学的研究院,充实博士学位,人才由自己训练。

阅读全文