当前所在位置: 首页 > 数学毕业论文 > 正文

浅谈数学的几个方面(第3页)

本文共计7928个字,预计阅读时长27分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  这是当前一个热门的课题,把高深的数学和物理联系起来了,导出了深刻的结果。现在拓扑在物理上有非常重要的应用,这跟杨振宁的Yang-Mills场方程有很密切的关系。杨先生喜欢说,你们数学家写的东西,我们学物理的人看不懂,等于另外一种文字。我想我们搞数学的人有责任把我们的结果,写成不是本行的人也至少知道你讲的是怎么一回事。物理学,量子力学,尤其是量子场论与数学的关系其实并不复杂。说到数学的应用,讲一下矢量空间,Euclid空间就是一个矢量空间。再进一步,多个矢量空间构成一个拓扑空间,这就是所谓的矢量丛,即一束这样的空间。这样的空间有一些简单的性质。比如说,局部来讲,这种矢量空间是一个chart,是一个集,可用坐标来表示。结果发现矢量丛这种空间在物理上很有用。物理学的一个基本观念是“场”。最简单的场是电磁场,尤为近代生活的一部分。电磁场的“势”适合Maxwell方程。Hermann Weyl第一个看出这个势不是一个确定的函数。它可以变化。这在物理上叫做规范(gauge,不完全确定的,可以变化的),这就是物理上规范场论的第一个情形。

  物理上有4种场:电磁场,引力场,强作用场和弱作用场。现在知道,这些场都是规范场。即数学系上是一束矢量空间,用一个线性群来缝住的。电磁场的重要推广,是Yang-Mills的规范场论。杨先生的伟大贡献就是在SU(2)(special unitary group in two variables)情形下得到物理意义明确的规范场,即同位旋(isospin)规范场,这种将数学现象给以物理的解释,是件了不起的工作,因为以往的Maxwell 场论是一个可交换的群。现在变为在SU(2),群是不能交换的。而实际上,物理中找到了这样的场,这是科学上一个伟大的发展。数学家可以自豪的是,物理学家所需的几何观念和工 具,在数学上已经发展了。

  杨先生之所以有这么大的成就,其中一个很重要的,很了不起的原因是除了物理的感觉以外,他有很坚实的数学基础。他能够在这大堆复杂的方程中看出某些规律,它们具有某种基本的数学性质。Yang-Mills方程的数学基础是纤维丛。这种观念Dirac就曾有过。Dirac的一篇基本论文中就讲到这种数学。但Dirac没有数学的工具。所以他在讲这种观念时,不但数学家不懂,就连物理学家也不懂。不过,其中有一个到现在还未解决的物理含义,即有否磁单极(magnetic monople)。可能会有。就是说,有否这样的场,它的曲率不等于0(曲率是度量场的复杂性的)?物理上要是发现了这种场,会是件不得了的事实。这些观念的数学不简单。

  Yang-Mills方程反过来影响到拓扑。现在的基础数学中,所谓低维拓扑(二维,三维,四维)非常受人注意。因为物理空间是四维空间。而四维空间有许多奇妙的性质。我们知道代数几何,曲线论,复变函数论等许多基础数学理论是二维拓扑。而现在必到四维,四维有spinor理论,有quantum结构。四维与物理更接近。它的结构是Lorentz结构,而不是Riemann结构。这方面有很多工作可做。根据Yang-Mills方程,对于四维拓扑,Atiyah的学生英国数学家Simon Donaldson有很重要的贡献。其中有一个结果就是利用Yang-Mills方程证明四维Euclid空间R4有无数微分结构与其标准结构不同。这一结果最近又由Seiberg-Witten的新方程大大的简化了。这是最近拓扑在微分几何,理论物理应用方面最引人注意的进展。

  二维流形的发展有一段光荣的历史,牵涉到许多深刻的数学。可以断言,三维,四维流形将更为丰富和神妙。

  5.球装问题(Sphere Packing)

  如何把一定的空间装得最紧,显然是一个实际而重要的问题。项武义教授最近在这方面做了很重要的工作。这里先介绍一个有关的问题:围着一个球,可以放几个同样大小的球?我们不妨假定球的半径为一,即单位球。在平面情形,绕一单位圆我们显然可以放6个单位圆。而在三维空间的情况则更为复杂。如果把单位球绕单位球相切,不难证明,12个球是放得进的。这时虽然还剩下许多空间,但不可能放进第13个球。要证明这一结论并不容易。当年Newton与Gregory有个讨论。Newton 说第13个球装不进,Gregory说也许可以。这个争论长期悬而未决。一直到1953年,K.Schutte和B.L.van der Waerden才给了一个证明。这个证明是很复杂的。

  一个更自然的问题是怎样把一个立方体空间用大小相同的球装得最紧。衡量装得是否紧凑的尺度是密度(density),即所装的球的`总的体积和立方体空间的体积的比例。Kepler于1611年提出了一个猜想:他认为立方体的球装的密度不会大于π/(18^1/2)。项武义说他证明了这个猜想。可是有人(Gabor Fejes Toth)认为他的证明不完全,甚至有人(Thomas L.Hales)说是错误的。"Mathematical Intelligencer"这个杂 志上(1995年),有关于这一问题的讨论,项武义有个答复。Toth是匈牙利数学家,三代人搞同一个课题。匈牙利数学很发达,在首都布达佩斯有个200多人的几何研究所。我不知道几何中是否有这么多重要的问题需要这么多人去做。最年轻的Toth在“Mathematics Reviews"中有篇关于项的文章的评论。他说项的文章有些定理没有详细的证明。天下的事情就是这样。做重要工作有争议的时候,便产生一些有趣的现象。不过他觉得项的意思是对的。不但项的意思是对的,甚至表示这个意思他从前也有。最近项武义把他认为没有的证明都有写出来了。

阅读全文