NFV移动网络论文(第2页)
本文共计4338个字,预计阅读时长15分钟。【 字体:大 中 小 】
3基于NFV的移动网络新型体系架构设计
3.1EPC现网架构特征与不足
支持LTE接入的EPC部分实现了信令面与用户面的分离,信令面网元包括MME、PCRF、HSS等,实现终端设备的鉴权授权、移动性管理、位置更新、签约管理、策略控制和网关选择等功能;用户面网元主要包括S-GW和P-GW,实现用户会话建立、承载管理、IP地址分配等功能。EPC核心网以P-GW为统一的用户面锚点,支持多接入系统,提供统一的移动性管理。WCDMA/GPRS接入、CDMA接入和WLAN接入一侧不同的本地服务网关(SGSN、HSGW等)与P-GW建立会话,由P-GW分配唯一IP地址实现业务数据流的连续性。EPC核心网具备控制与承载分离,多接入系统统一管理、统一业务数据流锚点等功能特性,是未来移动核心网系统演进的基础。随着移动网络业务的日新月异,当前的EPC架构逐渐不能满足业务和运营需求,并存在以下几方面的不足:
(1)架构层面划分不够合理
网络架构用户面和信令面分离的好处在于可以分别按照网络功能特性,实现核心网系统信令面集中部署,用户面边缘分布的优化,提升网络性能。但目前的层面划分中,网关节点仍承担了复杂的控制功能,与MME等信令面节点交互频繁。另外,UTRAN/GERAN、CDMA和WLAN系统接入EPC时,其信令面和用户面是合一的,增加了与E-utran协同组网的难度。
(2)多接入系统间协同能力较弱
EPC架构中实现了多接入系统基于层三IP地址的统一管理和流移动性。体现接入特性的二层则是相互独立的。运营商实际建网和运维中,每一种接入系统都是独立组网,异构系统间的资源无法共享,增加了网络OPEX和CAPEX。从用户角度看,业务数据流只能在接入系统间切换,无法实现多接入针对不同业务流要求的`协同服务,再加之异构接入系统协议存在差异,信息交互,切换流程复杂,不利于提升用户体验。
(3)网络能力的可扩展性较差
现有EPC网络由基于专用硬件的网元设备组成,硬件限定了网元功能的部署位置和性能指标。MME和P-GW设备部署在运营商核心域,汇聚层次较高,不利于降低业务时延,容易导致信令处理和流量瓶颈;移动网络业务量随时间变化特征明显,但网络规划时必须按最高业务预测设置节点能力,造成了闲时资源的极大浪费,固化的硬件节点无法随业务量变化灵活扩容和缩减,基于硬件设备和物理连接的扩容方法又导致机房组织和拓扑复杂等一系列新的问题。
3.2基于NFV的新型移动网络架构设想
NFV的核心思想是网元功能的软件化,理论上任何一种网络架构都可以引入NFV技术实现网元功能的软硬件分离。具体到移动网络网元功能虚拟化,除了NFV本身所具备的优点特性外,网元功能软件化和重构给移动网络架构演进提供了广阔的创新空间。(1)形成基于虚拟化平台的通用转发面如图3所示,EPC架构中的P-GW网元除了业务数据流转发功能外,还具有IP会话和承载控制功能。网络功能虚拟化实现后,P-GW形成独立的转发功能组件和IP会话和承载控制功能组件。IP会话和承载控制功能可抽取出来,与其他控制功能组件交互实现对用户会话和承载的统一控制。仅保留转发功能的P-GW不再是流量的汇聚点,而是普通转发节点,实现接入、汇聚和核心域全局扁平化网络。(2)屏蔽底层协议栈差异的统一控制面不同接入系统的业务流程(鉴权/授权、业务接入请求、切换等)和信元类型(用户标识、位置信息、无线和连接信息、QoS等)大体相近,下层协议栈的协议各自不同(GTP、PMIP等)。硬件网元功能与协议栈的绑定造成异构系统间信息交互复杂,协同工作困难。网络功能虚拟化实现后,底层协议栈的差别可由虚拟化平台统一处理,网元功能组件之间采用统一的消息格式和数据结构传递信息,完成业务流程。这样既可以消除控制节点间协议适配造成的额外开销,也可以实现异构接入系统间全局资源共享和协同控制功能。全面提升控制面处理能力。基于上述设计思路,基于NFV的新型移动架构层面更加清晰,转发面更加扁平,可更好地适应未来移动网络业务需求。和承载控制功能,形成全网集中的控制平面。基于虚拟化平台,软件形态的功能组件可以部署到网络的任意位置,通过标准化的消息接口和数据格式交换信息,完成业务流程。实现全网信息同步、接入协同和资源调度。全网架构采用云平台实现。可快速实现网络控制功能重构,转发面行为定义,未来运营商也可以按需组合,灵活编排,有利于新业务的快速开发和部署。云管理平台用于分配存储、计算及网络等资源,全局监控资源利用情况,根据所需动态地分配网络资源,提升网络建设和运营效率。
