当前所在位置: 首页 > 实习报告 > 正文

摄影类实习报告锦集(第3页)

本文共计4803个字,预计阅读时长17分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  实习主要内容:

  1.数据准备,包括摄影比例尺、相机内方位元素、航高、航带数、像片排列、 控制点分布等;

  2. 建立测区、设置测区参数;

  3. 建立模型、设置模型参数;

  4. 模型定向,包括内定向、相对定向、绝对定向方法与步骤。 其基本步骤是:建立测区、引入影象、建立模型、检查(修改)影象参数、建立相机 参数文件、建立加密点文件、设置成果输出参数、模型影象内定向、模型的相对定向、模型 的绝对定向、核线影象生成、匹配预处理、影象匹配、匹配结果的编辑、DEM 生成、DOM 及等高线影象生成、叠加影象生成、矢量测图、图廓整饰等。 通过本次实习使学生掌握摄影测量的内涵、摄影测量的基础知识、解析摄影测量原理 与方法、双像解析摄影测量,了解并能够理论与实际相联系,解决实际生产中的问题。 在完成以上的内容后,我们紧接着要做的是编写 K 平均区域分割程序,其基本原理是 将图像初步分成 K 个区域, 计算每个区域的灰度平均值, 将图像中每一像素分别与 K 个区域 灰度平均值进行比较,差值最小的区域与该像素最为接近,该像素分配给对应区域。

  整个图像扫描完成,重新计算每个区域的灰度平均值,重复上述比较. K-均值算法是迭代算法,每完成一次图像迭代,区域灰度平均值就重新计算一次,经过 多次迭代,使区域灰度平均值趋于稳定。 K 平均区域分割算法步骤: (1)任意选择 K 个初始区域,计算每个区域的灰度平均值。 Z1 , Z 2 , ?,Z K (2)使用最小距离判别准则,将图像全部像素分配给 K 类区域; i j 即对所有的 则判该像素属于第 i 类区域。 (3)用步骤(2)分类结果,重新计算各区域灰度平均值,并以此作为新的区域均值; (4)比较两次区域均值之差,若小于某一阈值,则类中心稳定,终止算法;否则返回 步骤(2) 。 参数设定:图像初始分割区域数 K=2*2,两次区域灰度平均值之差(阈值)=10 。编写 与调试图像 K 平均区域分割程序,输入图像名: eight.tif 。 完成以上步骤后, 我们的摄影测量的实习就算告一段落了。 实习虽然只有短短的一周时 间,但我学到了很多东西,让我更加深刻的了解了摄影测量学,把平时所学到的理论知识更 加真实的呈现在我面前,希望以后还会有这样的实习。

阅读全文