初中几何数学小论文范文(精选6篇)(第8页)
本文共计22562个字,预计阅读时长76分钟。【 字体:大 中 小 】
下面摘录的是学生自主思考后,得到的富有创意性的结论。②定理51(一线过圆心,且两线垂直)→ 定理36(一线平移成切线)→ 定理47、48(绕切点旋转)→ 定理50。
③如下图,把 EF 向下平移(或绕A点旋转),使定理37和50联系起来(有同结论 ∠α=∠D):
⒊ 推理模式
从学生各方面的反馈情况看,多数学生觉得几何抽象还在于几何推理形式多样、过程复杂而又摸不定,往往听课时知道该如何写,而自己书写时又漏掉某些步骤。怎样将形式多样的推理过程让学生看得清而又摸得着呢?为此,我们在二步推理的基础上,经过归纳整理,总结了三种基本推理模式。
具体教学分三个步骤实施:
⑴精心设计三个简单的例题,让学生归纳出三种基本推理模式。
① 条件 → 结论 → 新结论 (结论推新结论式)
② 新结论 (多个结论推新结论式)
③ 新结论 (结论和条件推新结论式)
⑵通过已详细书写证明过程 的题目让学生识别不同的推理模式。
⑶通过具体习题,学生有意识、有预见性地练习书写。
这一环节我们的目的是让学生先理解证明题的大致框架,在具体书写时有一定的模式,有效地克服了学生书写的盲目性。但教学表明学生仍然出现不必要的跳步,这是什么原因呢?我们把它归结为对推理的因果关系不明确、定理是推理的依据和单位不明白。因而我们根据需要,又设计了以下一个环节。
⒋ 组合定理
基本推理模式中的骨干部分还是定理的符号语言。因而在这一环节,我们让学生在证明的过程中找出单个定理的因果关系、多个定理的组合方式,然后由几个定理组合后构造图形,进一步强化学生“用定理”的意识。
下面通过一例来说明这一步骤的实施。 证明:连结OB,连结OA交BD于F。
学生从每一个推测符号中找出所对应的定理和隐含的主要定理:
比例基本性质 → S/AS/ 证相似 →相似三角形性质 →垂径定理 →勾股定理 →三角形面积公式
由于学生自己主动找定理,因而印象深刻。在证明过程中确实是由一个一个定理连结起来的,也让学生体会到把定理(不排除概念、公式等)镶嵌在基本模式中,就能形成严密的推理过程。此时,可顺势布置以下的任务:给出勾股定理,你能再结合一个或多个定理,构造图形,并编出证明题或计算题吗?
实践表明:经过“模式+定理”书写方法的熏陶后,学生基本具备了完整书写的意识。
⒌ 联想定理
分析图形是证明的基础,几何问题给出的图形有时是某些基本图形的残缺形式,通过作辅助线构造出定理的基本图形,为运用定理解决问题创造条件。图形固然可以引发联想(这也是教师分析几何证明题、学生证题的基本方法之一),但对于识图或想象力较差的学生来说,就比较困难,他们往往存有疑问:到底怎样才能分解出基本图形呢?在复杂的图形中怎样找到所需要的基本图形呢?因而我们从另一侧面,即证明题的“已知、求证”上给学生以支招,即由命题的题设、结论联想某些定理,以配合图形想象。
讨论此题时,启发学生由题设中的“AB是⊙O的直径”联想定理“直径所对的圆周角是90°”,因而连结BC;“过B作⊙O的切线交AE于F”联想定理“切线的性质”,得出∠ABF=90°。从而构造出基本图形②③。
由命题的结论“BF∥DE”联想起“同位角相等, 两直线平行”定理,构造出基本图形④。将上述基本图形②③④ 的性质结合在一起,学生就易于思考了。
这一环节我们的引导语有:“由已知中的哪一个条件,你能联想起什么定理?”、“条件组合后能构成哪个定理?”、“有无对应的基本图形?”、“能否构造出基本图形?”等。目的是让学生树立起“图形+定理”的思考方法,把以前的无意识思考变成有目的、有意识的思考。
三、几点认识
复习的效果最终要体现在学生身上,只有通过学生的自身实践和领悟才是最佳复习途径,因此在复习时,我们始终坚持主体性原则。在组织复习的各个环节中,充分调动学生学习的主动性和积极性:提出问题让学生想,设计问题让学生做,方法和规律让学生体会,创造性的解答共同完善。
