阿司匹林胃漂浮微球的制备(第2页)
本文共计6299个字,预计阅读时长21分钟。【 字体:大 中 小 】
2.5.2 方法稳定性考察
将阿司匹林贮备液用0.1 mol/L NaOH稀释成20 μg/mL溶液,放置15 min后分别于0、2、4、6、8 h测定吸收度,结果吸收度在8 h基本无变化,显示供试品在8 h内稳定。
2.5.3 线性关系考察
精密取阿司匹林对照品10.0 mg,加乙醇溶解,制成1 mg/mL。精密吸取上述溶液0.25、0.5、0.75、1.0、1.25、1.5 mL,分别置于25 mL容量瓶,用0.1 mol/L NaOH溶液稀释至刻度,以0.1 mol/L NaOH为空白,在296 nm波长处测定吸收度,经线性回归,得回归方程:A= 0.01872ρ+0.00573,r=09997。结果表明阿司匹林在10~60 μg/mL 浓度范围内,吸收度与浓度呈良好的线性关系。
2.5.4 回收率试验
精密称取阿司匹林对照品10、15、20 mg,分别置于10 mL容量瓶中,按处方比例加入乙基纤维素和PVA适量 ,加乙醇溶解并稀释至刻度。精密吸取0.5 mL 至25 mL容量瓶中,用0.1 mol/L NaOH溶液稀释至刻度,放置15 min,微孔滤膜过滤,在296 nm处测定吸收度,计算回收率,结果平均回收率为101.4%。
2.5.5 微球载药量与包封率的测定
精密称取阿司匹林对照品15 mg至10 mL的容量瓶中,加乙醇溶解并稀释至刻度。精密吸取0.5 mL 至25 mL容量瓶中,加0.1 mol/L NaOH稀释至刻度,放置15 min,在296 nm处测吸收度。精密称取自制阿司匹林微球约50 mg至10 mL容量瓶中,用乙醇稀释至刻度制成质量浓度为5 mg/mL的溶液。取0.5 mL至25 mL容量瓶中,加0.1 mol/L NaOH稀释至刻度,放置15 min,微孔滤膜过滤,在296 nm处测吸收度。按下式计算阿司匹林在微球中的含量及包封率。
2.6 阿司匹林胃漂浮微球的理化性能考察
按正交试验筛选的较佳工艺制备3批阿司匹林胃漂浮微球,样品平均得率为42% ,平均载药量为32%,包封率为20.5%。
2.6.1 微球形态及粒径分布
在光学显微镜下观察微球形态,呈光滑球状物,外观圆整,大小较均匀,无黏连现象。显微镜法测定200个微球直径,结果表明微球粒径大部分分布在45~200 μm范围内,平均粒径为70 μm。见图1。
2.6.2 微球的漂浮性能考察[6]
称取微球适量,分散于0.1 mol/L的`盐酸溶液表面(37±1 ℃,250 mL),以100 r/min搅拌12 h后,收集漂浮在液面上的微球,干燥后称重,计算漂浮率。结果微球体外12 h漂浮率为37.6%。
2.6.3 微球体外释药试验
按《中国药典》2000版溶出度测定小杯法[7]进行阿司匹林胃漂浮微球释放度测定,以0.1 mol/L盐酸溶液(37±1 ℃,250 mL)为释放介质,称取微球适量(相当于阿司匹林40 mg)撒布于溶出杯内,以100 r/min搅拌,分别在1、2、4、6、8、10、12 h取样5 mL(同时向溶出杯中补加同温度0.1 mol/L盐酸5 mL),微孔滤膜滤过,精密吸取滤液2 mL,加0.1 mol/L NaOH溶液稀释至10 mL,在296 nm处测吸收度,计算累积释放百分率,结果见图2。
3 讨 论
3.1 阿司匹林胃漂浮微球形成机理及影响因素
试验采用乳化―溶剂扩散技术制备阿司匹林中空微球,将药物与载体材料(EC)溶于乙醇-二氯甲烷形成有机相,搅拌下加至水相中,乳化分散形成O/W乳滴;由于乙醇迅速扩散进入水相,导致EC溶解度降低而与药物共同析出形成微球,形成的固化膜壳包裹二氯甲烷形成气腔。搅拌过程中二氯甲烷不断挥发,微球内部压力降低,水分进入充满空腔。微球干燥后水分蒸发,最终形成中空微球,而能在液面漂浮[4]。PVA作为乳化剂,吸附于乳滴表面形成乳化膜,阻止乳滴的合并,增加体系稳定性。二氯甲烷挥发的速度将直接影响微球的形态及理化性能。挥发太慢,微球易形成表面多孔结构,难以形成固化膜壳;挥发速度过快,微球表面呈现大块凹陷,难以形成中空结构,均影响其漂浮性能[8]。试验表明搅拌速度、药物与载体投料比、稳定剂等均能影响微球的成型与质量。搅拌速度慢,乳滴分散度小,微球粒径较大,易发生碰撞、黏连;搅拌速度过快,将影响二氯甲烷挥发的速度而影响微球质量。药物投入比例高,形成的微球载药量增加,但微球表面粗糙,药物多在微球表面沉淀结晶,不易形成均匀膜壳,微球易被介质渗透,漂浮性差。
3.2 药物的性质与微球包封性能
采用乳化―溶剂扩散技术制备微球,药物的溶解度以及在有机相和水之间的分配系数将影响微球的载药量和包封率[8]。阿司匹林在水中溶解度为3 mg/mL,在二氯甲烷和水之间的分配系数较小,制备微球的过程中多数的药物将逐渐扩散进入水相而使制得的微球包封率较低。选用脂溶性大的药物制备微球将会获得较高的载药量和包封率。


经济管理创新研究论文
化学分析仪器在环保水质检测方面的应用
分析化学在陶瓷原材料检测方面的应用及举例
秦腔的来源和发展
HACMP的历史和发展
象棋的变化和发展
试析我国内衣的发展趋势毕业论文
EDA技术的发展与应用
IP在EDA技术的应用和发展中的意义
探究计算机技术的发展和应用论文
EDA的应用和发展趋势
电子采购的应用和发展
工程施工中材料价格风险的控制与管理论文
浅谈塑木材料在园林景观工程中的应用的论文
相变材料对轻质建筑室内热环境的改善论文
材料语言在室内空间设计中的应用论文
水利水电工程混凝土材料成本优化研究论文
浅析影视动画在教育教学中有效应用研究论文
高分子材料简历模板
生活中的高分子材料