当前所在位置: 首页 > 数学毕业论文 > 正文

学生数学小论文(第2页)

本文共计17210个字,预计阅读时长58分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

学生数学小论文(第2页)3

  课堂从问题开始,又应以问题结束。一方面,我们需要重视培养学生的问题意识,让学生能够在学习过程中主动提出问题,另一方面,我们又要精心设计自己的提问,提高提问的实效性和艺术性。

  一、抓住关键,促进认识深入

  关键处的提问可以激发学生探究的热情,促进学生理解的深入。教学《两位数乘两位数》,教师让学生尝试接着完成以下两道题的计算(给出了第一步的计算过程):

  学生独立完成,汇报展示。之后,教师针对第一题的计算过程提问:竖式中两个75所表示的含义相同吗?针对第二题的计算过程提问:248表示什么?这两个问题的设计都注意抓住了两位数乘两位数计算的关键——乘数十位上的数与被乘数相乘积的`对位道理,既能巩固所学知识,又能培养学生的思维能力和语言表达等能力。

  二、层层递进,引导思维提升

  当学生对数学知识的理解出现疑惑时,教师不妨通过提问,引发学生的争论、交流,引导学生认识知识的本质,发展思维的深刻性。教学《探索图形覆盖的规律》一课时,为了使学生在运用中加深对规律的理解和运用,我创设了以下情境:

  礼堂里一排有12个座位,苏文昊、苏文昱是孪生兄妹,要让他们坐在一起,并且苏文昊在苏文昱的右边。在同一排有多少种不同的坐法?

  在学生独立思考后,引导学生解释自己的想法。之后,我把上述问题中的条件“并且苏文昊在苏文昱的右边”遮住,让学生继续思考。继而,我又提出问题:他们来到礼堂一看,发现第一张椅子被一个同学给坐了,现在还有11种不同的坐法吗? 如果是中间的一张椅子已经坐了一位同学,还有多少种坐法呢?

  这几个问题的设计,从不同的角度对原问题进行“变式”,抓住了学生的疑惑,既关注全体学生理解规律的本质,又关注不同层次学生思维发展的需求。

  三、围绕重点,促进新知理解

  提问中有一种经常性的方式是追问。追问就是在学生基本回答了教师提出的问题后,教师有针对性地“二度提问”,再次激活学生思维,促进对新知识的深入理解。教学《百分数的意义和读写》,在学生初步理解百分数的意义后,我安排了选择百分数填空的练习。其中有一道题是:某车间经过技术改良,现在每月的产量是原来的。在学生选择应该填108%之后,教师追问:为什么选择108%?其他百分数合适吗?这样的追问就有助于学生结合具体情境,理解分子大于分母的百分数的实际意义。

  提问是教师最重要的一项基本功。精巧的问题设计及对学生的回答做出机敏地回应往往能够体现教师的“功力”和“智慧”,也是影响学生学习效果的重要环节。

学生数学小论文(第2页)4

  大千世界,无奇不有,如果你做一个有心人,并且善于总结,总能发现它们之间的相互规律。这不,今天,我在做课外习题时,就有了下面一个小发现。

  最近,老师刚给我们讲解了有关等差数列的计算方法,其中最典型的例子为:1+2+3+4+5……+97+98+99+100=?老师讲解的算法为: 1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050,当时,我觉得自己已经听懂了,心想以后碰到这类题目我也可以做了。

  但是,在做到具体习题时,事情的发展并不如我想象的那么简单。今天,我在做习题时就遇到了一只“拦路虎”:1-3+5-7+9……-1999+20xx=?

  咋一看到这道题目,我首先就懵住了,后来,强迫自己冷静下来认真思考,终于理出了一点头绪:这是等差数列,要求出答案,只要把加的部分和减的部分求出,再求差就行了,即,1-3+5-7+9……-1999+20xx

  =(1+5+9+……+20xx)-(3+7+……+1999)

  但是,在计算1+5+9+……+20xx,以及3+7+……+1999时我犯了难,因为它与老师的'例题不相同,此时,我才感觉自己没有真正理解老师讲授的方法,于是我不得不重新学习老师的例题,并竭力回忆老师讲解的过程:1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050中,该公式的基本算法应该为:(首项+末项)*数列个数/2;对于从1开始的并且数列之间的差为1的数列而言,其数列个数为最大的数,那么,对于不是从1开始,并且数列之间的差不是1的数列如何计算数列的个数呢? 我陷入了迷茫之中。

阅读全文