当前所在位置: 首页 > 开题报告 > 正文

2024年课题开题报告范例(第46页)

本文共计82148个字,预计阅读时长274分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  上午好!我叫,是x级x班的学生,我的论文题目是。论文是在导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。

  首先,我想谈谈这个毕业论文设计的目的及意义。

  其次,我想谈谈这篇论文的结构和主要内容。

  本文分成x个部分.

  第一部分是这部分主要论述

  第二部分是这部分分析

  第三部分是

  最重要的是大方得体

  当然态度的背后,是你要自信,无论知识还是答辩前的准备。

  首先,向老师,同学问好。自我介绍:哪个专业哪个班。

  再介绍自己的题目,选题的原因,收集资料的来源,所费时间。

  再介绍自己的框架,分几部分论述

  再具体介绍每部分内容...... 2024年课题开题报告范例(第46页) 篇31

  论文题目:关于泰勒公式的应用

  课题研究意义

  在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?

  通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。

  文献综述

  主要内容

  Taylor公式的应用

  Taylor公式在计算极限中的应用

  对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。满足下列情况时可考虑用泰勒公式求极限:

  (1)用洛比达法则时,次数较多,且求导及化简过程较繁;

  (2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;

  (3)所遇到的函数展开为泰勒公式不难。

  当确定了要用泰勒公式求极限时,关键是确定展开的阶数。如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。

  Taylor公式在证明不等式中的应用

  有关一般不等式的证明

  针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。证明思路:

  (1)写出比最高阶导数低一阶的Taylor公式;

  (2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。

  有关定积分不等式的证明

  针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。

  证题思路:直接写出的`Taylor展开式,然后根据题意对展开式进行缩放。

  有关定积分等式的证明

  针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。

  证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor

  余项作适当处理。

  Taylor公式在近似计算中的应用

  利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。

  研究方法

  为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。具体采用了数学归纳法、分析法、反证法、演绎法等方法。

  进度计划

  为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。

阅读全文