当前所在位置: 首页 > 论文范文 > 正文

在电子商务中如何正确的使用数据挖掘技术(第2页)

本文共计2592个字,预计阅读时长9分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  3.1不同的挖掘任务使用不同的挖掘技术

  数据挖掘的任务是从数据中发现模式。根据挖掘任务,数据挖掘可分为概念描述、聚集发现、关联规则发现、分类发现、回归发现和序列模式发现等。在选择使用某种数据挖掘技术之前,首先要将待解决的商业问题转化成正确的数据挖掘的任务,然后根据挖掘的任务来选择具体使用某一种或几种挖掘技术。下面具体的分析每一种挖掘任务应使用哪些挖掘技术。

  概念描述

  概念描述是描述式数据挖掘的最基本形式。它以简洁汇总的形式描述给定的任务相关数据集,提供数据的有趣的一般特性。概念描述由特征化和比较组成。数据特征化是目标类数据的一般特征或特性的汇总。通常,用户指定类的数据通过数据库查询收集。例如,为研究上一年销售增加10%的软件产品的特征,可以通过执行一个SQL查询收集关于这些产品的数据。概念的特征化有两种一般方法:基于数据立方体OLAP的方法和面向属性归纳的方法。二者都是基于属性或维的概化方法.数据特征的输出可以用多种形式提供。包括饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。数据区分是将目标类对象的一般特征与一个或多个对比类对象的一般特征比较。例如,将上一年销售增加10%的软件产品与同一时期销售至少下降30%的那些产品进行比较。用于数据区分的方法与用于数据特征化的方法类似。总之,进行概念描述挖掘时一般采用面向数据库的方法,另外还可以采用机器学习方法的基于范例学习技术。与机器学习方法相比,面向数据库的概念描述导致在大型数据库和数据仓库中的有效性和可伸缩性。

  聚集发现

  聚集是把整个数据库分成不

在电子商务中如何正确的使用数据挖掘技术(第2页)

阅读全文