当前所在位置: 首页 > 数学毕业论文 > 正文

少数民族数学教师继续教育课程设置与实施论文(第4页)

本文共计8366个字,预计阅读时长28分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  3.1促进数学深度理解的策略

  3.1.1案例分析促进数学概念的深度理解

  数学概念是掌握数学原理和程序的基础.如果只是把数学当成是一套需要掌握的原理和程序教给学生,学生将只会学到原理和程序,而把数学看作是集原理、程序、概念以及问题解决与一体的教学,学生将会学到这三类知识,并且与只学技能和程序知识的学生表现的一样好.[10]115增进教师对于概念的深度理解,继续教育培训中可以提供概念教学相关案例,在案例的讨论与辨析中,帮助教师认识到:通过教学设计创设情境,可以引导学生参与操作活动,从特例中寻找一般规律,在概念教学中理解数学是“模式的科学”,从而促进学生对概念的深度理解.比如,奇数与偶数概念教学.教学案例一:可以让学生尝试用数字除以二,发现是否能够整除的规律,再进行分类,由所举实例中抽象得到奇数和偶数的概念.教学案例二:让学生进行奇数、偶数性质的探究.学生做出各种各样的观察,得到多样的结论———偶数是能被2整除的数字;奇数和偶数交替出现;每两个相邻的奇数之间有一个偶数,每两个相邻偶数之间有一个奇数.甚至有些学生尝试操作两个一堆摆木棒活动中,描述奇数和偶数的特征,定义偶数是“如果将一定数量的物体逐一成对排列(或挑出),当操作完成时,没有物体剩下,则此数为偶数.”以上两种教学案例中,案例二不是为了引出概念而强拉硬扯地进行“做作”的设计,而是顺应了更为“自然”的思维过程,在教学过程中体现“顺流而下”自然的衔接,能够充分调动学生的积极性,帮助学生理解概念的内涵.虽然经过操作活动,学生对于概念所下定义的描述不够准确,但在概念描述不断准确的过程中可以加深对于概念本质属性的理解,实现提高学生数学语言表达能力和培养数学交流活动经验的教育目标.

  3.1.2数学专业素养中关注建构知识点间的联系

  中学数学课程的选择与编排整体上呈现螺旋上升的特点,随着内容体系的逐渐深化,学生知识面的开阔以及思维水平的发展,整个内容体系才渐渐清晰起来.但就某个学段,某个单元而言,教材呈现的内容却往往是孤立的.同时,为了顾及到不同年龄段学生思维发展的不同水平,同一个内容体系下对于不同的学段设立了不同的教学目标.学生在数学学习中如果只是得到单个的知识点与片段,没有形成有效的知识结构与网络,既不利于知识的记忆,又不利于知识的提取和灵活应用.教师已经“知道了现在所知道的东西……就像看得见的人可以告诉盲人如何去创造和发现”[11],学生建构知识网络需要教师的引导,只有教师具备较为宏观的整体结构观念和建构关联的能力,才能够有效地指导学生的数学学习.因此,建构知识点间的联系应该是教师专业素养培养的重要指标.比如,中小学数学中函数的思想,就学科纵向而言,教师应该明确函数产生和发展的过程.中小学数学教材编排的顺序是:从小数与数四则运算中得到对应的结果,到折线统计图中的数量间对应关系的体现以及初中段函数的“变量说”,再到高中段函数的“对应说”,每个阶段为适应相应学段的要求,表现出函数思想不同的层次水平.只有表现出整个基础教育阶段函数思想的层层递进,做到“瞻前顾后”才能实现“润物细无声”的效果.就学科横向而言,教师应该明确函数与方程、不等式和数列之间密切的联系.教师应具备以函数为核心的数学知识结构,才能帮助学生构建以函数为中心的知识结构网络,深入理解函数的思想和方法.

  3.1.3数学问题解决中教师自我意义的建构

  积极参与和良好的数学学习情感体验是学生高效和深度理解学习的保障.无论是“浸入式”还是数学活动中学习,目的都是为了创设合适的情境帮助学生理解数学问题中的意义,建立学生与真实世界之间的联系.为此,教师应该明确数学的意义和价值,获得问题解决的积极体验,认识到“每个人都能学习数学.这不再是什么能力问题,这只是一个你如何传播和让人去思考数学的问题”.[10]102教师只有具备正确的数学观,认识到数学易缪性而非仅仅确定性的哲学属性,才能为建构正确的数学意义奠定基础;只有切身参与探究和解决问题,才能达成自我意义的积极建构.首先,教师可以在解决实际问题中进行自我意义的建构.教师应留心日常生产和生活中的实际问题,尝试收集能够建立数学模型去解决的问题和能做出独立判断的实例.比如,用一张矩形铁皮制作无盖铁皮盒,怎样裁剪和使用能获得最大体积的最优化问题.其次,教师需要对数学现象进行意义建构.对数学现象进行意义生成是数学家要做的,教师学会运用这种方法,通过意义建构达到数学本质深入的理解.比如,类比多边形,欧拉研究了凸多面体的顶点数、面数和棱数的关系,得到欧拉多面体公式.那么,类比点分直线、直线分平面所成最多部分,从平面到空间的类比,如何得到平面分空间所成最多部分的猜想,怎样验证这个猜想.通过类比数学家解决数学问题的经验,在新问题的解决过程中教师学会运用数学方法.

阅读全文