当前所在位置: 首页 > 数学毕业论文 > 正文

初三数学教学工作计划(精选15篇)(第12页)

本文共计27272个字,预计阅读时长91分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  第二十五章 概率初步:理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。

五、教学措施

  1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。

  2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。

  3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。

  4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

  5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。

  6、成立学习小组。根据班内实际情况

  初三数学教学工作计划11

一、指导思想:

  以《初中数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

二、基本情况分析:

  1.学生情况分析:

  从上学期学生期末考试总体来看,成绩在前面的基础上有较大的提高。在学生所学知识的掌握程度上,整个年级已经形成了严重的两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生在推理上的思维训练有所缺陷,对很多孩子来说,对几何有畏难情绪,相关知识学得不很透彻。在代数上现行的教材降低了孩子们在计算上的难度,对于一些较简单的计算题,讲解新课时,能又快又好的进行计算,但时间一长,学生又忘得快,根据以往的经验,学生在广泛的深入的理解基础上使知识在各个方面建立起有机的联系,是最不容易忘记的,但现在的要求中,学生在这方面还是有所缺失的。

  2.教师情况分析:

  本学期我们初三共八个班级,四位数学教师负责其数学教学工作:马同贝老师任教三年级一、二班;宫美玲老师任教三年级三、四班;迟菊任教三年级五、六班;李昌义老师任教三年级七、八班。我们初三级部全都是年轻教师,相对来说经验不够丰富,但是只要发挥好团队合作精神,充分运用新颖多变的教学方法,积极调动学生的学习积极性,相信我们初三的数学教学业务水平将会不断提高。

  3.教材情况分析:

  第六章证明(二)、第八章证明(三)、与证明(一)类似,本章所涉及的很多命题在前面已由学生通过一些直观的方法进行了探索,所以学生对这些结论已经有所了解。对于这些命题,教科书努力将证明的思路展现出来。教科书首先采用提问的方式让学生回忆这些结论,以及探索结论的方法和过程,因为这些方法和过程往往会对证明的思路有所启发。然后再利用公理和已有的定理去证明这些结论。这样处理旨在将抽象的证明与直观的探索联系起来。此外,教科书还注意渗透归纳、类比、转化等数学思想方法。第七章《一元二次方程》:在前几册学生已经学习了一元二次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题。本章将研究一元二次方程的有关概念、解法和应用等。第九章《反比例函数》:掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。再次经历找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题的过程,进一步体会函数是刻画现实世界中变化规律的重要数学模型。第十章《频率与概率》:学生已经认识了许多随机事件发生的可能性,并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。但学生对随机时件及其发生的概率的认识是一个较长的认知过程,学生对概率的理解也有必要随着其数学活动经验的不断加深而逐步得到发展。本章将继续学习概率计算有理论计算和实验估算两种方式。

阅读全文