当前所在位置: 首页 > 计算机 > 正文

图像拼接算法及实现(第15页)

29 次下载 16 页 26845 字【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

 

% copy image

Y = A4;

  5.3实验结果

   下面将本文的算法用于多聚焦图像的融合。多聚焦图像指的是对相同的场景用不同的焦距进行拍摄,得到镜头聚焦目标不同的多个图像。经过图像融合技术后,就可以得到一个所有目标都聚焦清晰的图像。图5-1中左边的目标较为清晰,图5-2中右边的目标较为清晰。

 

图5-1 聚焦在左边的图像

 

图5-2 聚焦在右边的图像

  我们分别利用基于PCA的算法、金字塔图像融合法和小波变换法的算法程序得到的的融合图像结果,如图5-3、图5-4、图5-5所示

 

图5-3 基于PCA算法的融合图像

 

图5-4 基于金字塔图像融合算法的融合图像

 

 

 

图5-5 基于SIDWT小波变换的融合图像

    从实验结果可以看出,三种方案都可以得到较满意的视觉效果,消除了原图像的聚焦差异,提高了图像的清晰度,在合成图像中左、右两边的目标都很清晰。但通过比较分析,我们可以看出基于小波变换的融合图像(图5-5)最为清晰,所表现的图像细节效果最好,重影现象消除得最干净。图5-3的清晰度不够,而图5-4的细节表现力较弱,只有图5-5的边缘最清晰,重影消除地最干净,细节得到了最好地保留。

 

 

 

 

 

 

 

 

  第六章  与展望

  6.1 本论文工作的总结

    图像拼接技术一直是视觉、图像处理和计算机图形学的热点研究方向。它可以用来建立大视角的高分辨率图像,在虚拟现实领域、图像处理领域、遥感技术领域和军事领域中均有广泛的应用。

    本文总结了前人在图像拼接领域的研究成果和研究现状,按照图像拼接的流程(图像预处理、图像配准和图像融合),详细介绍了图像拼接技术,主要完成的工作有:(1)图像预处理主要指对图像进行几何畸变校正和噪声点的抑制等,让参考图像和待拼接图像不存在明显的几何畸变。

  (2)图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息中寻找最佳的匹配,完成图像间的对齐。图像配准是图像拼接技术中的核心部分。本文分析了现有的多种图像配准算法。   

  (3)图像融合指在完成图像匹配以后,对图像进行缝合,并对缝合的边界进行平滑处理,让缝合自然过渡。

    (4)论文的最后简要介绍了利用matlab实现的图像拼接软件,该软件实现了本文讨论到的所有方法。

  6.2展望

  经过3个月的研究,本文对图像拼接技术的研究涉及到了现有图像拼接领域的大多方法。但对于这一研究领域来说,本文所作的工作只是沧海一粟。事实上,还有很多图像拼接问题值得去研究和解决,由于时间的关系,本文没有做进一步的研究。

    根据图像拼接技术的研究体会,本人认为以下几个方面有待于进一步研究:

    (1)本文的图像拼接算法的研究,是基于两幅图像间重叠区域并不存在运动的物体的假设的。但是在有些情况下,待拼接的图像采集过程中,会有运动的物体出现。如果在重叠区域存在运动物体的情况下,如何消除运动物体对拼接图像带来的影响例如,两幅图像因为重叠区域的运动物体,在合成的图像中该区域出现重影),是需要进一步研究的问题。

    (2)本文讨论的图像拼接算法,并不是针对特定图像的研究。但是,图像拼接在用于实际应用的时候,有时是针对某一特定的图像。如何通过特定目标的特征从图像中提取出特定目标(例如,人脸、足球),以此来帮助完成图像拼接,这需要加深对图像中特定目标的理解和分割。因此,如何更好的理解图像,分割出特定图像中的目标物体,通过特征物体的配准来完成图像拼接,是一个可以重点研究的方向。

阅读全文