当前所在位置: 首页 > 开题报告 > 正文

建筑学开题报告十篇(第5页)

本文共计30427个字,预计阅读时长102分钟。【 字体:

论文指导服务

毕业论文网专业团队提供毕业设计、论文写作指导及相关咨询服务

论文指导 毕业设计 答辩咨询
微信号已复制到剪贴板

  [2]明星,黄虎。舒适性空气调节系统的节能分析。水利电力施工机械,20xx(2)

  [3]马最良,姚杨,主编。民用建筑空调设计。北京:化学工业出版社

  [4]建设部采暖通风与空气调节设计规范中国计划出版社

  [5]艾学良暖通与空调常用数据手册吉林科学技术出版社

  [6]陆耀庆实用供热空调设计手册中国建筑工业出版社

  [8]. ASHRAE Handbook,“Fundamentals”,ASHRAE Inc.

  [9] Shan K,Wang.Handbook of Air Conditioning and Refrigeration.McGraw-Hill Inc.

建筑学开题报告 篇3

  一、立论依据

  课题来源、选题依据和背景情况、课题研究目的、工程应用价值

  题目:格构式钢管混凝土柱的耐火性能分析

  课题来源:

  研究人从事炼钢厂房,连铸厂房以及与钢铁行业相关的工艺平台,管道支架等的结构设计。在设计过程中经常遇见采用格构式钢管混凝土柱的工程;而一方面行业内对钢结构组合结构有防火要求,另一方面钢铁厂相比其他工业厂房更容易发生火灾,因此本研究拟以格构式钢管混凝土柱升温与降温受火性能研究为方向,考察破坏形态及其受火极限状态。

  二、文献综述

  参考文献:

  1. 钟善桐. 钢管混凝土结构[m]. 清华大学出版社有限公司, 20xx.

  2. 蔡绍怀. 现代钢管混凝土结构[m]. 人民交通出版社, 20xx.

  3. 欧智菁, 陈宝春. 钢管混凝土格构柱偏心受压面内极限承载力分析[j]. 建筑结构学报, , 27(4): 80-83.

  4. 廖彦波. 钢管混凝土格构柱轴压性能的试验研究与分析[d]. 清华大学, .

  5. 蒋丽忠, 周旺保, 伍震宇, 等. 四肢钢管混凝土格构柱极限承载力的试验研究与理论分析[j]. 土木工程学报, (9): 55-62.

  6. 陈宝春, 欧智菁. 钢管混凝土格构柱极限承载力计算方法研究[j]. 土木工程学报, , 41(1): 55-63.

  7. 周文亮. 钢管混凝土格构式柱受力性能研究[d]. 西安科技大学, .

  8. engesser f. die knickfestigkeitgeraderstbe[m]. w. ernst sohn, 1891.

  9. duan l, reno m, uang c. effect of compound buckling on compression strength of built-up members[j]. engineering journal, 20xx, 39(1): 30-37.

  10. razdolsky a g. euler critical force calculation for laced columns[j]. journal of engineering mechanics, , 131(10): 997-1003.

  11. razdolsky a g. flexural buckling of laced column with crosswise lattice[j]. proceedings of the ice-engineering and computational mechanics, , 161(2): 69-76.

  12. razdolsky a g. flexural buckling of laced column with serpentine lattice[j]. the ies journal part a: civil structural engineering, , 3(1): 38-49.

  13. kawano a, matsui c. cyclic local buckling and fracture of concrete filled tubular members[c]//proceedings of an engineering foundation conference on composite construction in steel and concrete iv, asce. 20xx, 28.

  14. kawano a, sakino k. seismic resistance of cft trusses[j]. engineering structures, 20xx, 25(5): 607-619.

  15. kawano a, sakino k, kuma k, et al. seismic resistant system of multi-story frames using concrete-filled tubular trusses[j]. int society of offshore and polar engineers. cupertino, ca, 20xx: 95015-0189.

  16. kawano a, matsui c. the deformation capacity of trusses with concrete filled tubular chords[c]//proceedings of an engineering foundation conference on composite construction in steel and concrete iv, asce. 20xx, 28.

  17. klingsch w. new developments in fire resistance of hollow section structures[c]//symposium on hollow structural sections in building construction. 1985.

  18. klingsch w. optimization of cross sections of steel composite columns[c]//proc. of the third international conference on steel-concrete composite structures, special volume, asccs, fukuoka. 1991: 99-105.

  19. lie t t, cowan h j. fire and buildings[m]. applied science publishers limited, 1972.

  20. lie t t, chabot m. experimental studies on the fire resistance of hollow steel columns filled with plain concrete[j]. 1992.

  21. lie t t, stringer d c. calculation of the fire resistance of steel hollow structural section columns filled with plain concrete[j]. canadian journal of civil engineering, 1994, 21(3): 382-385.

  22. lie t t, chabot m. evaluation of the fire resistance of compression members using mathematical models[j]. fire safety journal, 1993, 20(2): 135-149.

  23. kodur v k r. performance-based fire resistance design of concrete-filled steel columns[j]. journal of constructional steel research, 1999, 51(1): 21-36.

阅读全文